L(s) = 1 | + (−2.34 − 1.70i)3-s + (−2.01 + 6.21i)5-s + (20.0 − 14.5i)7-s + (−5.74 − 17.6i)9-s + (32.9 − 15.7i)11-s + (−22.3 − 68.7i)13-s + (15.3 − 11.1i)15-s + (−1.71 + 5.28i)17-s + (−31.7 − 23.0i)19-s − 71.9·21-s + 172.·23-s + (66.5 + 48.3i)25-s + (−40.8 + 125. i)27-s + (−11.0 + 7.99i)29-s + (−32.5 − 100. i)31-s + ⋯ |
L(s) = 1 | + (−0.451 − 0.327i)3-s + (−0.180 + 0.555i)5-s + (1.08 − 0.787i)7-s + (−0.212 − 0.655i)9-s + (0.902 − 0.431i)11-s + (−0.476 − 1.46i)13-s + (0.263 − 0.191i)15-s + (−0.0244 + 0.0753i)17-s + (−0.383 − 0.278i)19-s − 0.747·21-s + 1.55·23-s + (0.532 + 0.387i)25-s + (−0.291 + 0.895i)27-s + (−0.0704 + 0.0511i)29-s + (−0.188 − 0.579i)31-s + ⋯ |
Λ(s)=(=(88s/2ΓC(s)L(s)(0.389+0.921i)Λ(4−s)
Λ(s)=(=(88s/2ΓC(s+3/2)L(s)(0.389+0.921i)Λ(1−s)
Degree: |
2 |
Conductor: |
88
= 23⋅11
|
Sign: |
0.389+0.921i
|
Analytic conductor: |
5.19216 |
Root analytic conductor: |
2.27863 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ88(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 88, ( :3/2), 0.389+0.921i)
|
Particular Values
L(2) |
≈ |
1.10844−0.734855i |
L(21) |
≈ |
1.10844−0.734855i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−32.9+15.7i)T |
good | 3 | 1+(2.34+1.70i)T+(8.34+25.6i)T2 |
| 5 | 1+(2.01−6.21i)T+(−101.−73.4i)T2 |
| 7 | 1+(−20.0+14.5i)T+(105.−326.i)T2 |
| 13 | 1+(22.3+68.7i)T+(−1.77e3+1.29e3i)T2 |
| 17 | 1+(1.71−5.28i)T+(−3.97e3−2.88e3i)T2 |
| 19 | 1+(31.7+23.0i)T+(2.11e3+6.52e3i)T2 |
| 23 | 1−172.T+1.21e4T2 |
| 29 | 1+(11.0−7.99i)T+(7.53e3−2.31e4i)T2 |
| 31 | 1+(32.5+100.i)T+(−2.41e4+1.75e4i)T2 |
| 37 | 1+(352.−255.i)T+(1.56e4−4.81e4i)T2 |
| 41 | 1+(53.1+38.6i)T+(2.12e4+6.55e4i)T2 |
| 43 | 1−230.T+7.95e4T2 |
| 47 | 1+(198.+144.i)T+(3.20e4+9.87e4i)T2 |
| 53 | 1+(−92.7−285.i)T+(−1.20e5+8.75e4i)T2 |
| 59 | 1+(−71.1+51.7i)T+(6.34e4−1.95e5i)T2 |
| 61 | 1+(103.−317.i)T+(−1.83e5−1.33e5i)T2 |
| 67 | 1+345.T+3.00e5T2 |
| 71 | 1+(−203.+624.i)T+(−2.89e5−2.10e5i)T2 |
| 73 | 1+(−860.+624.i)T+(1.20e5−3.69e5i)T2 |
| 79 | 1+(−165.−509.i)T+(−3.98e5+2.89e5i)T2 |
| 83 | 1+(9.74−29.9i)T+(−4.62e5−3.36e5i)T2 |
| 89 | 1−1.20e3T+7.04e5T2 |
| 97 | 1+(161.+497.i)T+(−7.38e5+5.36e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.48327619396251668733296095514, −12.27629993087970180732405638543, −11.22478418756824250995112076541, −10.57534767381386964986350783025, −8.919492571572108113081388676510, −7.58485766236519429234647669243, −6.59903691374715700684785638120, −5.10116811530944817512523194945, −3.38149642647001139748849088613, −0.932410038234645167240944775196,
1.88416715320367914411331595462, 4.46207636099811113800106520716, 5.24295221652677244978595091511, 6.93229181848011103758389616605, 8.472763766129043200161368335204, 9.274725401750217466290569464635, 10.88194119105149220789590992283, 11.69864774083889686454124050031, 12.50021731241442672317920657727, 14.11890824432242874803531652889