L(s) = 1 | + (2.61 + 1.89i)3-s + (6.32 − 19.4i)5-s + (−5.38 + 3.91i)7-s + (−5.12 − 15.7i)9-s + (25.0 − 26.5i)11-s + (16.3 + 50.2i)13-s + (53.4 − 38.8i)15-s + (18.3 − 56.5i)17-s + (89.7 + 65.1i)19-s − 21.4·21-s − 48.0·23-s + (−237. − 172. i)25-s + (43.4 − 133. i)27-s + (−100. + 72.8i)29-s + (94.2 + 290. i)31-s + ⋯ |
L(s) = 1 | + (0.502 + 0.365i)3-s + (0.565 − 1.74i)5-s + (−0.290 + 0.211i)7-s + (−0.189 − 0.583i)9-s + (0.685 − 0.728i)11-s + (0.348 + 1.07i)13-s + (0.920 − 0.668i)15-s + (0.262 − 0.807i)17-s + (1.08 + 0.787i)19-s − 0.223·21-s − 0.435·23-s + (−1.90 − 1.38i)25-s + (0.309 − 0.953i)27-s + (−0.642 + 0.466i)29-s + (0.546 + 1.68i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.696 + 0.717i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.696 + 0.717i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.72877 - 0.731669i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72877 - 0.731669i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 11 | \( 1 + (-25.0 + 26.5i)T \) |
good | 3 | \( 1 + (-2.61 - 1.89i)T + (8.34 + 25.6i)T^{2} \) |
| 5 | \( 1 + (-6.32 + 19.4i)T + (-101. - 73.4i)T^{2} \) |
| 7 | \( 1 + (5.38 - 3.91i)T + (105. - 326. i)T^{2} \) |
| 13 | \( 1 + (-16.3 - 50.2i)T + (-1.77e3 + 1.29e3i)T^{2} \) |
| 17 | \( 1 + (-18.3 + 56.5i)T + (-3.97e3 - 2.88e3i)T^{2} \) |
| 19 | \( 1 + (-89.7 - 65.1i)T + (2.11e3 + 6.52e3i)T^{2} \) |
| 23 | \( 1 + 48.0T + 1.21e4T^{2} \) |
| 29 | \( 1 + (100. - 72.8i)T + (7.53e3 - 2.31e4i)T^{2} \) |
| 31 | \( 1 + (-94.2 - 290. i)T + (-2.41e4 + 1.75e4i)T^{2} \) |
| 37 | \( 1 + (128. - 93.2i)T + (1.56e4 - 4.81e4i)T^{2} \) |
| 41 | \( 1 + (-184. - 134. i)T + (2.12e4 + 6.55e4i)T^{2} \) |
| 43 | \( 1 + 302.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (0.196 + 0.142i)T + (3.20e4 + 9.87e4i)T^{2} \) |
| 53 | \( 1 + (41.2 + 127. i)T + (-1.20e5 + 8.75e4i)T^{2} \) |
| 59 | \( 1 + (227. - 165. i)T + (6.34e4 - 1.95e5i)T^{2} \) |
| 61 | \( 1 + (-165. + 509. i)T + (-1.83e5 - 1.33e5i)T^{2} \) |
| 67 | \( 1 - 695.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (118. - 365. i)T + (-2.89e5 - 2.10e5i)T^{2} \) |
| 73 | \( 1 + (-616. + 447. i)T + (1.20e5 - 3.69e5i)T^{2} \) |
| 79 | \( 1 + (71.6 + 220. i)T + (-3.98e5 + 2.89e5i)T^{2} \) |
| 83 | \( 1 + (232. - 715. i)T + (-4.62e5 - 3.36e5i)T^{2} \) |
| 89 | \( 1 - 1.19e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-20.9 - 64.4i)T + (-7.38e5 + 5.36e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.75188349945266998225829570537, −12.39622584825392848840094784187, −11.71285684289257954415221849538, −9.688479053128394346604318479017, −9.167555158951180392862646882100, −8.354370289888708530354989727082, −6.32367285345193611624001297397, −5.05446431333636937400022819176, −3.58618931059507346504485670572, −1.25109659199712826329364511889,
2.22126717945734530868991645545, 3.47151758470875997607260210357, 5.81116210793122571381739190435, 7.00147310330274712492604684628, 7.88213885627699402606765571388, 9.622548937219314714780555045846, 10.47381071635186547433024954126, 11.48043727510914162221714789082, 13.09580736465596685697589533463, 13.84719891030584087409180773818