L(s) = 1 | + (2.61 + 1.89i)3-s + (6.32 − 19.4i)5-s + (−5.38 + 3.91i)7-s + (−5.12 − 15.7i)9-s + (25.0 − 26.5i)11-s + (16.3 + 50.2i)13-s + (53.4 − 38.8i)15-s + (18.3 − 56.5i)17-s + (89.7 + 65.1i)19-s − 21.4·21-s − 48.0·23-s + (−237. − 172. i)25-s + (43.4 − 133. i)27-s + (−100. + 72.8i)29-s + (94.2 + 290. i)31-s + ⋯ |
L(s) = 1 | + (0.502 + 0.365i)3-s + (0.565 − 1.74i)5-s + (−0.290 + 0.211i)7-s + (−0.189 − 0.583i)9-s + (0.685 − 0.728i)11-s + (0.348 + 1.07i)13-s + (0.920 − 0.668i)15-s + (0.262 − 0.807i)17-s + (1.08 + 0.787i)19-s − 0.223·21-s − 0.435·23-s + (−1.90 − 1.38i)25-s + (0.309 − 0.953i)27-s + (−0.642 + 0.466i)29-s + (0.546 + 1.68i)31-s + ⋯ |
Λ(s)=(=(88s/2ΓC(s)L(s)(0.696+0.717i)Λ(4−s)
Λ(s)=(=(88s/2ΓC(s+3/2)L(s)(0.696+0.717i)Λ(1−s)
Degree: |
2 |
Conductor: |
88
= 23⋅11
|
Sign: |
0.696+0.717i
|
Analytic conductor: |
5.19216 |
Root analytic conductor: |
2.27863 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ88(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 88, ( :3/2), 0.696+0.717i)
|
Particular Values
L(2) |
≈ |
1.72877−0.731669i |
L(21) |
≈ |
1.72877−0.731669i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1+(−25.0+26.5i)T |
good | 3 | 1+(−2.61−1.89i)T+(8.34+25.6i)T2 |
| 5 | 1+(−6.32+19.4i)T+(−101.−73.4i)T2 |
| 7 | 1+(5.38−3.91i)T+(105.−326.i)T2 |
| 13 | 1+(−16.3−50.2i)T+(−1.77e3+1.29e3i)T2 |
| 17 | 1+(−18.3+56.5i)T+(−3.97e3−2.88e3i)T2 |
| 19 | 1+(−89.7−65.1i)T+(2.11e3+6.52e3i)T2 |
| 23 | 1+48.0T+1.21e4T2 |
| 29 | 1+(100.−72.8i)T+(7.53e3−2.31e4i)T2 |
| 31 | 1+(−94.2−290.i)T+(−2.41e4+1.75e4i)T2 |
| 37 | 1+(128.−93.2i)T+(1.56e4−4.81e4i)T2 |
| 41 | 1+(−184.−134.i)T+(2.12e4+6.55e4i)T2 |
| 43 | 1+302.T+7.95e4T2 |
| 47 | 1+(0.196+0.142i)T+(3.20e4+9.87e4i)T2 |
| 53 | 1+(41.2+127.i)T+(−1.20e5+8.75e4i)T2 |
| 59 | 1+(227.−165.i)T+(6.34e4−1.95e5i)T2 |
| 61 | 1+(−165.+509.i)T+(−1.83e5−1.33e5i)T2 |
| 67 | 1−695.T+3.00e5T2 |
| 71 | 1+(118.−365.i)T+(−2.89e5−2.10e5i)T2 |
| 73 | 1+(−616.+447.i)T+(1.20e5−3.69e5i)T2 |
| 79 | 1+(71.6+220.i)T+(−3.98e5+2.89e5i)T2 |
| 83 | 1+(232.−715.i)T+(−4.62e5−3.36e5i)T2 |
| 89 | 1−1.19e3T+7.04e5T2 |
| 97 | 1+(−20.9−64.4i)T+(−7.38e5+5.36e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.75188349945266998225829570537, −12.39622584825392848840094784187, −11.71285684289257954415221849538, −9.688479053128394346604318479017, −9.167555158951180392862646882100, −8.354370289888708530354989727082, −6.32367285345193611624001297397, −5.05446431333636937400022819176, −3.58618931059507346504485670572, −1.25109659199712826329364511889,
2.22126717945734530868991645545, 3.47151758470875997607260210357, 5.81116210793122571381739190435, 7.00147310330274712492604684628, 7.88213885627699402606765571388, 9.622548937219314714780555045846, 10.47381071635186547433024954126, 11.48043727510914162221714789082, 13.09580736465596685697589533463, 13.84719891030584087409180773818