L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.5 − 0.363i)3-s + (−0.809 + 0.587i)4-s + (0.190 − 0.587i)6-s + (−0.809 − 0.587i)8-s + (−0.190 − 0.587i)9-s + (−0.809 − 0.587i)11-s + 0.618·12-s + (0.309 − 0.951i)16-s + (−0.5 + 1.53i)17-s + (0.5 − 0.363i)18-s + (1.30 + 0.951i)19-s + (0.309 − 0.951i)22-s + (0.190 + 0.587i)24-s + (−0.809 − 0.587i)25-s + ⋯ |
L(s) = 1 | + (0.309 + 0.951i)2-s + (−0.5 − 0.363i)3-s + (−0.809 + 0.587i)4-s + (0.190 − 0.587i)6-s + (−0.809 − 0.587i)8-s + (−0.190 − 0.587i)9-s + (−0.809 − 0.587i)11-s + 0.618·12-s + (0.309 − 0.951i)16-s + (−0.5 + 1.53i)17-s + (0.5 − 0.363i)18-s + (1.30 + 0.951i)19-s + (0.309 − 0.951i)22-s + (0.190 + 0.587i)24-s + (−0.809 − 0.587i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.624 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 88 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.624 - 0.781i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5020617844\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5020617844\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 + (0.809 + 0.587i)T \) |
good | 3 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 7 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-1.30 - 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - 0.618T + T^{2} \) |
| 47 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + 1.61T + T^{2} \) |
| 71 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - 0.618T + T^{2} \) |
| 97 | \( 1 + (-0.190 - 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.63897058595544622008336749038, −13.57082369504535396098154693607, −12.63529772308978450025900787089, −11.68522582067869304824667459207, −10.15619435925391413893199930499, −8.700097417800058409783457980085, −7.66367238784448783056406444752, −6.29990722230209404329316790795, −5.50038095571044670886224694877, −3.67884878259526706903463378333,
2.68791914585162550379183914391, 4.65735988994615014311933168328, 5.47635468920967000080472360694, 7.48952021262817008111292203391, 9.191973812477788515768121620020, 10.13125239066839070428183229427, 11.19988117789173054107974827317, 11.86431717417097928868419946550, 13.27116718676973756489086046972, 13.87047523104848998121753688517