L(s) = 1 | + 3.37·3-s + 5-s − 3.37·7-s + 8.37·9-s + 11-s + 2·13-s + 3.37·15-s + 1.37·17-s − 0.627·19-s − 11.3·21-s − 2.74·23-s + 25-s + 18.1·27-s + 1.37·29-s − 3.37·31-s + 3.37·33-s − 3.37·35-s + 9.37·37-s + 6.74·39-s − 11.4·41-s + 4·43-s + 8.37·45-s − 2.74·47-s + 4.37·49-s + 4.62·51-s − 4.11·53-s + 55-s + ⋯ |
L(s) = 1 | + 1.94·3-s + 0.447·5-s − 1.27·7-s + 2.79·9-s + 0.301·11-s + 0.554·13-s + 0.870·15-s + 0.332·17-s − 0.144·19-s − 2.48·21-s − 0.572·23-s + 0.200·25-s + 3.48·27-s + 0.254·29-s − 0.605·31-s + 0.587·33-s − 0.570·35-s + 1.54·37-s + 1.07·39-s − 1.79·41-s + 0.609·43-s + 1.24·45-s − 0.400·47-s + 0.624·49-s + 0.648·51-s − 0.565·53-s + 0.134·55-s + ⋯ |
Λ(s)=(=(880s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(880s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.055431996 |
L(21) |
≈ |
3.055431996 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 11 | 1−T |
good | 3 | 1−3.37T+3T2 |
| 7 | 1+3.37T+7T2 |
| 13 | 1−2T+13T2 |
| 17 | 1−1.37T+17T2 |
| 19 | 1+0.627T+19T2 |
| 23 | 1+2.74T+23T2 |
| 29 | 1−1.37T+29T2 |
| 31 | 1+3.37T+31T2 |
| 37 | 1−9.37T+37T2 |
| 41 | 1+11.4T+41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+2.74T+47T2 |
| 53 | 1+4.11T+53T2 |
| 59 | 1−2.74T+59T2 |
| 61 | 1+5.37T+61T2 |
| 67 | 1+8T+67T2 |
| 71 | 1+10.1T+71T2 |
| 73 | 1+15.4T+73T2 |
| 79 | 1−1.25T+79T2 |
| 83 | 1−2.74T+83T2 |
| 89 | 1+1.37T+89T2 |
| 97 | 1+12.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.850487950012927257926481345266, −9.273971700822136757062469376054, −8.621437105409727728538132941072, −7.74731770890256922204915804004, −6.85794322406348863803057283312, −6.03293434937577325166887497596, −4.38179429008167304117657808191, −3.46291824474165386622167249990, −2.80319074640273897047538451374, −1.59946110200437612641870625021,
1.59946110200437612641870625021, 2.80319074640273897047538451374, 3.46291824474165386622167249990, 4.38179429008167304117657808191, 6.03293434937577325166887497596, 6.85794322406348863803057283312, 7.74731770890256922204915804004, 8.621437105409727728538132941072, 9.273971700822136757062469376054, 9.850487950012927257926481345266