Properties

Label 2-880-1.1-c1-0-12
Degree $2$
Conductor $880$
Sign $1$
Analytic cond. $7.02683$
Root an. cond. $2.65081$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.37·3-s + 5-s − 3.37·7-s + 8.37·9-s + 11-s + 2·13-s + 3.37·15-s + 1.37·17-s − 0.627·19-s − 11.3·21-s − 2.74·23-s + 25-s + 18.1·27-s + 1.37·29-s − 3.37·31-s + 3.37·33-s − 3.37·35-s + 9.37·37-s + 6.74·39-s − 11.4·41-s + 4·43-s + 8.37·45-s − 2.74·47-s + 4.37·49-s + 4.62·51-s − 4.11·53-s + 55-s + ⋯
L(s)  = 1  + 1.94·3-s + 0.447·5-s − 1.27·7-s + 2.79·9-s + 0.301·11-s + 0.554·13-s + 0.870·15-s + 0.332·17-s − 0.144·19-s − 2.48·21-s − 0.572·23-s + 0.200·25-s + 3.48·27-s + 0.254·29-s − 0.605·31-s + 0.587·33-s − 0.570·35-s + 1.54·37-s + 1.07·39-s − 1.79·41-s + 0.609·43-s + 1.24·45-s − 0.400·47-s + 0.624·49-s + 0.648·51-s − 0.565·53-s + 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(880\)    =    \(2^{4} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(7.02683\)
Root analytic conductor: \(2.65081\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 880,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.055431996\)
\(L(\frac12)\) \(\approx\) \(3.055431996\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 - T \)
good3 \( 1 - 3.37T + 3T^{2} \)
7 \( 1 + 3.37T + 7T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 - 1.37T + 17T^{2} \)
19 \( 1 + 0.627T + 19T^{2} \)
23 \( 1 + 2.74T + 23T^{2} \)
29 \( 1 - 1.37T + 29T^{2} \)
31 \( 1 + 3.37T + 31T^{2} \)
37 \( 1 - 9.37T + 37T^{2} \)
41 \( 1 + 11.4T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + 2.74T + 47T^{2} \)
53 \( 1 + 4.11T + 53T^{2} \)
59 \( 1 - 2.74T + 59T^{2} \)
61 \( 1 + 5.37T + 61T^{2} \)
67 \( 1 + 8T + 67T^{2} \)
71 \( 1 + 10.1T + 71T^{2} \)
73 \( 1 + 15.4T + 73T^{2} \)
79 \( 1 - 1.25T + 79T^{2} \)
83 \( 1 - 2.74T + 83T^{2} \)
89 \( 1 + 1.37T + 89T^{2} \)
97 \( 1 + 12.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.850487950012927257926481345266, −9.273971700822136757062469376054, −8.621437105409727728538132941072, −7.74731770890256922204915804004, −6.85794322406348863803057283312, −6.03293434937577325166887497596, −4.38179429008167304117657808191, −3.46291824474165386622167249990, −2.80319074640273897047538451374, −1.59946110200437612641870625021, 1.59946110200437612641870625021, 2.80319074640273897047538451374, 3.46291824474165386622167249990, 4.38179429008167304117657808191, 6.03293434937577325166887497596, 6.85794322406348863803057283312, 7.74731770890256922204915804004, 8.621437105409727728538132941072, 9.273971700822136757062469376054, 9.850487950012927257926481345266

Graph of the $Z$-function along the critical line