Properties

Label 2-880-1.1-c1-0-19
Degree $2$
Conductor $880$
Sign $-1$
Analytic cond. $7.02683$
Root an. cond. $2.65081$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 3·7-s − 2·9-s − 11-s − 6·13-s + 15-s − 7·17-s − 5·19-s − 3·21-s + 6·23-s + 25-s − 5·27-s + 5·29-s + 3·31-s − 33-s − 3·35-s + 3·37-s − 6·39-s + 2·41-s − 4·43-s − 2·45-s + 2·47-s + 2·49-s − 7·51-s − 53-s − 55-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 1.13·7-s − 2/3·9-s − 0.301·11-s − 1.66·13-s + 0.258·15-s − 1.69·17-s − 1.14·19-s − 0.654·21-s + 1.25·23-s + 1/5·25-s − 0.962·27-s + 0.928·29-s + 0.538·31-s − 0.174·33-s − 0.507·35-s + 0.493·37-s − 0.960·39-s + 0.312·41-s − 0.609·43-s − 0.298·45-s + 0.291·47-s + 2/7·49-s − 0.980·51-s − 0.137·53-s − 0.134·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(880\)    =    \(2^{4} \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(7.02683\)
Root analytic conductor: \(2.65081\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 880,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
good3 \( 1 - T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 7 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 7 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.604100883180305119694719486737, −8.976631286949291998537604701701, −8.214855445870152436084038682621, −6.96290485918056996428743397373, −6.46925986382253407591418544135, −5.27646996011335233092203843669, −4.28393931774823338150480925867, −2.81267195278645779898796150454, −2.42545807821311073856045852532, 0, 2.42545807821311073856045852532, 2.81267195278645779898796150454, 4.28393931774823338150480925867, 5.27646996011335233092203843669, 6.46925986382253407591418544135, 6.96290485918056996428743397373, 8.214855445870152436084038682621, 8.976631286949291998537604701701, 9.604100883180305119694719486737

Graph of the $Z$-function along the critical line