L(s) = 1 | + 3-s + 5-s − 3·7-s − 2·9-s − 11-s − 6·13-s + 15-s − 7·17-s − 5·19-s − 3·21-s + 6·23-s + 25-s − 5·27-s + 5·29-s + 3·31-s − 33-s − 3·35-s + 3·37-s − 6·39-s + 2·41-s − 4·43-s − 2·45-s + 2·47-s + 2·49-s − 7·51-s − 53-s − 55-s + ⋯ |
L(s) = 1 | + 0.577·3-s + 0.447·5-s − 1.13·7-s − 2/3·9-s − 0.301·11-s − 1.66·13-s + 0.258·15-s − 1.69·17-s − 1.14·19-s − 0.654·21-s + 1.25·23-s + 1/5·25-s − 0.962·27-s + 0.928·29-s + 0.538·31-s − 0.174·33-s − 0.507·35-s + 0.493·37-s − 0.960·39-s + 0.312·41-s − 0.609·43-s − 0.298·45-s + 0.291·47-s + 2/7·49-s − 0.980·51-s − 0.137·53-s − 0.134·55-s + ⋯ |
Λ(s)=(=(880s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(880s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
| 11 | 1+T |
good | 3 | 1−T+pT2 |
| 7 | 1+3T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1+7T+pT2 |
| 19 | 1+5T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1−5T+pT2 |
| 31 | 1−3T+pT2 |
| 37 | 1−3T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−2T+pT2 |
| 53 | 1+T+pT2 |
| 59 | 1−10T+pT2 |
| 61 | 1−7T+pT2 |
| 67 | 1+8T+pT2 |
| 71 | 1+7T+pT2 |
| 73 | 1−14T+pT2 |
| 79 | 1+10T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1+15T+pT2 |
| 97 | 1+12T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.604100883180305119694719486737, −8.976631286949291998537604701701, −8.214855445870152436084038682621, −6.96290485918056996428743397373, −6.46925986382253407591418544135, −5.27646996011335233092203843669, −4.28393931774823338150480925867, −2.81267195278645779898796150454, −2.42545807821311073856045852532, 0,
2.42545807821311073856045852532, 2.81267195278645779898796150454, 4.28393931774823338150480925867, 5.27646996011335233092203843669, 6.46925986382253407591418544135, 6.96290485918056996428743397373, 8.214855445870152436084038682621, 8.976631286949291998537604701701, 9.604100883180305119694719486737