L(s) = 1 | + (−0.220 − 0.678i)3-s + (−0.809 − 0.587i)5-s + (−0.116 + 0.357i)7-s + (2.01 − 1.46i)9-s + (0.107 + 3.31i)11-s + (2.28 − 1.66i)13-s + (−0.220 + 0.678i)15-s + (3.91 + 2.84i)17-s + (−0.905 − 2.78i)19-s + 0.268·21-s − 3.77·23-s + (0.309 + 0.951i)25-s + (−3.16 − 2.30i)27-s + (2.60 − 8.03i)29-s + (6.50 − 4.72i)31-s + ⋯ |
L(s) = 1 | + (−0.127 − 0.391i)3-s + (−0.361 − 0.262i)5-s + (−0.0439 + 0.135i)7-s + (0.671 − 0.488i)9-s + (0.0322 + 0.999i)11-s + (0.634 − 0.461i)13-s + (−0.0569 + 0.175i)15-s + (0.949 + 0.689i)17-s + (−0.207 − 0.639i)19-s + 0.0585·21-s − 0.786·23-s + (0.0618 + 0.190i)25-s + (−0.609 − 0.443i)27-s + (0.484 − 1.49i)29-s + (1.16 − 0.848i)31-s + ⋯ |
Λ(s)=(=(880s/2ΓC(s)L(s)(0.594+0.803i)Λ(2−s)
Λ(s)=(=(880s/2ΓC(s+1/2)L(s)(0.594+0.803i)Λ(1−s)
Degree: |
2 |
Conductor: |
880
= 24⋅5⋅11
|
Sign: |
0.594+0.803i
|
Analytic conductor: |
7.02683 |
Root analytic conductor: |
2.65081 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ880(641,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 880, ( :1/2), 0.594+0.803i)
|
Particular Values
L(1) |
≈ |
1.33136−0.671236i |
L(21) |
≈ |
1.33136−0.671236i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.809+0.587i)T |
| 11 | 1+(−0.107−3.31i)T |
good | 3 | 1+(0.220+0.678i)T+(−2.42+1.76i)T2 |
| 7 | 1+(0.116−0.357i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−2.28+1.66i)T+(4.01−12.3i)T2 |
| 17 | 1+(−3.91−2.84i)T+(5.25+16.1i)T2 |
| 19 | 1+(0.905+2.78i)T+(−15.3+11.1i)T2 |
| 23 | 1+3.77T+23T2 |
| 29 | 1+(−2.60+8.03i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−6.50+4.72i)T+(9.57−29.4i)T2 |
| 37 | 1+(−0.877+2.70i)T+(−29.9−21.7i)T2 |
| 41 | 1+(1.14+3.53i)T+(−33.1+24.0i)T2 |
| 43 | 1−6.48T+43T2 |
| 47 | 1+(0.800+2.46i)T+(−38.0+27.6i)T2 |
| 53 | 1+(−0.0394+0.0286i)T+(16.3−50.4i)T2 |
| 59 | 1+(−0.509+1.56i)T+(−47.7−34.6i)T2 |
| 61 | 1+(7.03+5.11i)T+(18.8+58.0i)T2 |
| 67 | 1+11.4T+67T2 |
| 71 | 1+(−11.4−8.30i)T+(21.9+67.5i)T2 |
| 73 | 1+(−0.158+0.488i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−10.5+7.63i)T+(24.4−75.1i)T2 |
| 83 | 1+(−2.21−1.60i)T+(25.6+78.9i)T2 |
| 89 | 1−12.0T+89T2 |
| 97 | 1+(13.0−9.44i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.971029824722937668986533115645, −9.276178089783979870466304099560, −8.092113585684683918531640118580, −7.61468902148330493545822462315, −6.52716256099334092730364907081, −5.81805018001164054838183064518, −4.49988318694834729374633426678, −3.78649485366392744960321214371, −2.26146453554270525046484533887, −0.883685741068940286410924034009,
1.28745732477701713372980737879, 3.01720645596976070288246653134, 3.90698911433499621269502536186, 4.87890066365125238839876061510, 5.91487655173309201527669676728, 6.83719958060996317364170119831, 7.79745009714599433228856908265, 8.517260687939952552868749426071, 9.530025526667447311884818070782, 10.43195351057346627961173933767