L(s) = 1 | + (−0.177 − 0.547i)3-s + (0.809 + 0.587i)5-s + (1.12 − 3.47i)7-s + (2.15 − 1.56i)9-s + (−0.490 + 3.28i)11-s + (2.29 − 1.66i)13-s + (0.177 − 0.547i)15-s + (−2.98 − 2.17i)17-s + (0.0293 + 0.0904i)19-s − 2.10·21-s − 1.16·23-s + (0.309 + 0.951i)25-s + (−2.63 − 1.91i)27-s + (−2.08 + 6.42i)29-s + (5.48 − 3.98i)31-s + ⋯ |
L(s) = 1 | + (−0.102 − 0.315i)3-s + (0.361 + 0.262i)5-s + (0.426 − 1.31i)7-s + (0.719 − 0.522i)9-s + (−0.147 + 0.989i)11-s + (0.635 − 0.461i)13-s + (0.0459 − 0.141i)15-s + (−0.724 − 0.526i)17-s + (0.00674 + 0.0207i)19-s − 0.458·21-s − 0.242·23-s + (0.0618 + 0.190i)25-s + (−0.507 − 0.369i)27-s + (−0.387 + 1.19i)29-s + (0.984 − 0.715i)31-s + ⋯ |
Λ(s)=(=(880s/2ΓC(s)L(s)(0.440+0.897i)Λ(2−s)
Λ(s)=(=(880s/2ΓC(s+1/2)L(s)(0.440+0.897i)Λ(1−s)
Degree: |
2 |
Conductor: |
880
= 24⋅5⋅11
|
Sign: |
0.440+0.897i
|
Analytic conductor: |
7.02683 |
Root analytic conductor: |
2.65081 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ880(641,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 880, ( :1/2), 0.440+0.897i)
|
Particular Values
L(1) |
≈ |
1.46676−0.914109i |
L(21) |
≈ |
1.46676−0.914109i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.809−0.587i)T |
| 11 | 1+(0.490−3.28i)T |
good | 3 | 1+(0.177+0.547i)T+(−2.42+1.76i)T2 |
| 7 | 1+(−1.12+3.47i)T+(−5.66−4.11i)T2 |
| 13 | 1+(−2.29+1.66i)T+(4.01−12.3i)T2 |
| 17 | 1+(2.98+2.17i)T+(5.25+16.1i)T2 |
| 19 | 1+(−0.0293−0.0904i)T+(−15.3+11.1i)T2 |
| 23 | 1+1.16T+23T2 |
| 29 | 1+(2.08−6.42i)T+(−23.4−17.0i)T2 |
| 31 | 1+(−5.48+3.98i)T+(9.57−29.4i)T2 |
| 37 | 1+(−3.04+9.35i)T+(−29.9−21.7i)T2 |
| 41 | 1+(2.57+7.91i)T+(−33.1+24.0i)T2 |
| 43 | 1−2.96T+43T2 |
| 47 | 1+(−0.687−2.11i)T+(−38.0+27.6i)T2 |
| 53 | 1+(2.42−1.75i)T+(16.3−50.4i)T2 |
| 59 | 1+(−2.62+8.09i)T+(−47.7−34.6i)T2 |
| 61 | 1+(−6.86−4.98i)T+(18.8+58.0i)T2 |
| 67 | 1−13.4T+67T2 |
| 71 | 1+(−6.71−4.88i)T+(21.9+67.5i)T2 |
| 73 | 1+(0.407−1.25i)T+(−59.0−42.9i)T2 |
| 79 | 1+(11.2−8.15i)T+(24.4−75.1i)T2 |
| 83 | 1+(8.61+6.25i)T+(25.6+78.9i)T2 |
| 89 | 1+12.1T+89T2 |
| 97 | 1+(−3.50+2.54i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05199773497268518947514493141, −9.338167459705094174494984031632, −8.137513112604179252660591332017, −7.13316100776908285648171078709, −6.92960765574655250759325954404, −5.66875872823725525761419946800, −4.47782914483702712848969602528, −3.76598887600749613638144355664, −2.17257794492365013591415070593, −0.930607650645638655614440456585,
1.57615467347272262414299914567, 2.68833115532689616752372706878, 4.12604934046040278654595024825, 5.02915153711191487162313797489, 5.89255702661979190396490562115, 6.61297193975791982817119398896, 8.184762636900511430436484363782, 8.463988077818216626034623566206, 9.460514924610377323021031378390, 10.21385246144377640521972443392