L(s) = 1 | + (−0.177 − 0.547i)3-s + (0.809 + 0.587i)5-s + (1.12 − 3.47i)7-s + (2.15 − 1.56i)9-s + (−0.490 + 3.28i)11-s + (2.29 − 1.66i)13-s + (0.177 − 0.547i)15-s + (−2.98 − 2.17i)17-s + (0.0293 + 0.0904i)19-s − 2.10·21-s − 1.16·23-s + (0.309 + 0.951i)25-s + (−2.63 − 1.91i)27-s + (−2.08 + 6.42i)29-s + (5.48 − 3.98i)31-s + ⋯ |
L(s) = 1 | + (−0.102 − 0.315i)3-s + (0.361 + 0.262i)5-s + (0.426 − 1.31i)7-s + (0.719 − 0.522i)9-s + (−0.147 + 0.989i)11-s + (0.635 − 0.461i)13-s + (0.0459 − 0.141i)15-s + (−0.724 − 0.526i)17-s + (0.00674 + 0.0207i)19-s − 0.458·21-s − 0.242·23-s + (0.0618 + 0.190i)25-s + (−0.507 − 0.369i)27-s + (−0.387 + 1.19i)29-s + (0.984 − 0.715i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.440 + 0.897i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.440 + 0.897i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46676 - 0.914109i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46676 - 0.914109i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (0.490 - 3.28i)T \) |
good | 3 | \( 1 + (0.177 + 0.547i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (-1.12 + 3.47i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (-2.29 + 1.66i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.98 + 2.17i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-0.0293 - 0.0904i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 1.16T + 23T^{2} \) |
| 29 | \( 1 + (2.08 - 6.42i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.48 + 3.98i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.04 + 9.35i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.57 + 7.91i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 - 2.96T + 43T^{2} \) |
| 47 | \( 1 + (-0.687 - 2.11i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (2.42 - 1.75i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.62 + 8.09i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-6.86 - 4.98i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 13.4T + 67T^{2} \) |
| 71 | \( 1 + (-6.71 - 4.88i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.407 - 1.25i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (11.2 - 8.15i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (8.61 + 6.25i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 12.1T + 89T^{2} \) |
| 97 | \( 1 + (-3.50 + 2.54i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05199773497268518947514493141, −9.338167459705094174494984031632, −8.137513112604179252660591332017, −7.13316100776908285648171078709, −6.92960765574655250759325954404, −5.66875872823725525761419946800, −4.47782914483702712848969602528, −3.76598887600749613638144355664, −2.17257794492365013591415070593, −0.930607650645638655614440456585,
1.57615467347272262414299914567, 2.68833115532689616752372706878, 4.12604934046040278654595024825, 5.02915153711191487162313797489, 5.89255702661979190396490562115, 6.61297193975791982817119398896, 8.184762636900511430436484363782, 8.463988077818216626034623566206, 9.460514924610377323021031378390, 10.21385246144377640521972443392