Properties

Label 2-880-11.3-c1-0-21
Degree $2$
Conductor $880$
Sign $-0.999 - 0.00395i$
Analytic cond. $7.02683$
Root an. cond. $2.65081$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.655 − 2.01i)3-s + (0.809 + 0.587i)5-s + (−0.0946 + 0.291i)7-s + (−1.21 + 0.884i)9-s + (−2.72 − 1.89i)11-s + (−2.68 + 1.95i)13-s + (0.655 − 2.01i)15-s + (−4.58 − 3.33i)17-s + (−0.464 − 1.43i)19-s + 0.650·21-s + 0.343·23-s + (0.309 + 0.951i)25-s + (−2.56 − 1.86i)27-s + (2.15 − 6.64i)29-s + (−4.80 + 3.49i)31-s + ⋯
L(s)  = 1  + (−0.378 − 1.16i)3-s + (0.361 + 0.262i)5-s + (−0.0357 + 0.110i)7-s + (−0.405 + 0.294i)9-s + (−0.820 − 0.571i)11-s + (−0.745 + 0.541i)13-s + (0.169 − 0.521i)15-s + (−1.11 − 0.808i)17-s + (−0.106 − 0.328i)19-s + 0.141·21-s + 0.0716·23-s + (0.0618 + 0.190i)25-s + (−0.494 − 0.359i)27-s + (0.400 − 1.23i)29-s + (−0.863 + 0.627i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.00395i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.00395i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(880\)    =    \(2^{4} \cdot 5 \cdot 11\)
Sign: $-0.999 - 0.00395i$
Analytic conductor: \(7.02683\)
Root analytic conductor: \(2.65081\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{880} (641, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 880,\ (\ :1/2),\ -0.999 - 0.00395i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.00122742 + 0.619932i\)
\(L(\frac12)\) \(\approx\) \(0.00122742 + 0.619932i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (-0.809 - 0.587i)T \)
11 \( 1 + (2.72 + 1.89i)T \)
good3 \( 1 + (0.655 + 2.01i)T + (-2.42 + 1.76i)T^{2} \)
7 \( 1 + (0.0946 - 0.291i)T + (-5.66 - 4.11i)T^{2} \)
13 \( 1 + (2.68 - 1.95i)T + (4.01 - 12.3i)T^{2} \)
17 \( 1 + (4.58 + 3.33i)T + (5.25 + 16.1i)T^{2} \)
19 \( 1 + (0.464 + 1.43i)T + (-15.3 + 11.1i)T^{2} \)
23 \( 1 - 0.343T + 23T^{2} \)
29 \( 1 + (-2.15 + 6.64i)T + (-23.4 - 17.0i)T^{2} \)
31 \( 1 + (4.80 - 3.49i)T + (9.57 - 29.4i)T^{2} \)
37 \( 1 + (-1.63 + 5.04i)T + (-29.9 - 21.7i)T^{2} \)
41 \( 1 + (2.25 + 6.94i)T + (-33.1 + 24.0i)T^{2} \)
43 \( 1 + 4.16T + 43T^{2} \)
47 \( 1 + (-1.94 - 5.98i)T + (-38.0 + 27.6i)T^{2} \)
53 \( 1 + (8.63 - 6.27i)T + (16.3 - 50.4i)T^{2} \)
59 \( 1 + (-0.590 + 1.81i)T + (-47.7 - 34.6i)T^{2} \)
61 \( 1 + (8.27 + 6.01i)T + (18.8 + 58.0i)T^{2} \)
67 \( 1 + 10.4T + 67T^{2} \)
71 \( 1 + (-9.03 - 6.56i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (0.792 - 2.43i)T + (-59.0 - 42.9i)T^{2} \)
79 \( 1 + (-1.95 + 1.42i)T + (24.4 - 75.1i)T^{2} \)
83 \( 1 + (-3.66 - 2.66i)T + (25.6 + 78.9i)T^{2} \)
89 \( 1 - 2.46T + 89T^{2} \)
97 \( 1 + (11.1 - 8.06i)T + (29.9 - 92.2i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.647488936837829380543902266728, −8.887697218946953342946203976823, −7.74856209544487804931098401105, −7.11909870531731466384954114392, −6.37566230455774823185720357889, −5.53511989464766170654969055578, −4.45892606660809449956476477310, −2.80216734870516798793046712332, −1.95971175837046930014716861527, −0.28802360970746959906791391214, 2.00376000154456963888711008251, 3.38180649700657143863659282527, 4.59664344102306633169578775674, 5.02506210280135076867837148641, 6.01727575645440070828217315253, 7.14151938549471722883588905433, 8.153055751877517771621777281833, 9.093940753449519282460001403725, 9.936831157011614391650910052195, 10.41243538461290658481830767828

Graph of the $Z$-function along the critical line