L(s) = 1 | + (−0.655 − 2.01i)3-s + (0.809 + 0.587i)5-s + (−0.0946 + 0.291i)7-s + (−1.21 + 0.884i)9-s + (−2.72 − 1.89i)11-s + (−2.68 + 1.95i)13-s + (0.655 − 2.01i)15-s + (−4.58 − 3.33i)17-s + (−0.464 − 1.43i)19-s + 0.650·21-s + 0.343·23-s + (0.309 + 0.951i)25-s + (−2.56 − 1.86i)27-s + (2.15 − 6.64i)29-s + (−4.80 + 3.49i)31-s + ⋯ |
L(s) = 1 | + (−0.378 − 1.16i)3-s + (0.361 + 0.262i)5-s + (−0.0357 + 0.110i)7-s + (−0.405 + 0.294i)9-s + (−0.820 − 0.571i)11-s + (−0.745 + 0.541i)13-s + (0.169 − 0.521i)15-s + (−1.11 − 0.808i)17-s + (−0.106 − 0.328i)19-s + 0.141·21-s + 0.0716·23-s + (0.0618 + 0.190i)25-s + (−0.494 − 0.359i)27-s + (0.400 − 1.23i)29-s + (−0.863 + 0.627i)31-s + ⋯ |
Λ(s)=(=(880s/2ΓC(s)L(s)(−0.999−0.00395i)Λ(2−s)
Λ(s)=(=(880s/2ΓC(s+1/2)L(s)(−0.999−0.00395i)Λ(1−s)
Degree: |
2 |
Conductor: |
880
= 24⋅5⋅11
|
Sign: |
−0.999−0.00395i
|
Analytic conductor: |
7.02683 |
Root analytic conductor: |
2.65081 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ880(641,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 880, ( :1/2), −0.999−0.00395i)
|
Particular Values
L(1) |
≈ |
0.00122742+0.619932i |
L(21) |
≈ |
0.00122742+0.619932i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−0.809−0.587i)T |
| 11 | 1+(2.72+1.89i)T |
good | 3 | 1+(0.655+2.01i)T+(−2.42+1.76i)T2 |
| 7 | 1+(0.0946−0.291i)T+(−5.66−4.11i)T2 |
| 13 | 1+(2.68−1.95i)T+(4.01−12.3i)T2 |
| 17 | 1+(4.58+3.33i)T+(5.25+16.1i)T2 |
| 19 | 1+(0.464+1.43i)T+(−15.3+11.1i)T2 |
| 23 | 1−0.343T+23T2 |
| 29 | 1+(−2.15+6.64i)T+(−23.4−17.0i)T2 |
| 31 | 1+(4.80−3.49i)T+(9.57−29.4i)T2 |
| 37 | 1+(−1.63+5.04i)T+(−29.9−21.7i)T2 |
| 41 | 1+(2.25+6.94i)T+(−33.1+24.0i)T2 |
| 43 | 1+4.16T+43T2 |
| 47 | 1+(−1.94−5.98i)T+(−38.0+27.6i)T2 |
| 53 | 1+(8.63−6.27i)T+(16.3−50.4i)T2 |
| 59 | 1+(−0.590+1.81i)T+(−47.7−34.6i)T2 |
| 61 | 1+(8.27+6.01i)T+(18.8+58.0i)T2 |
| 67 | 1+10.4T+67T2 |
| 71 | 1+(−9.03−6.56i)T+(21.9+67.5i)T2 |
| 73 | 1+(0.792−2.43i)T+(−59.0−42.9i)T2 |
| 79 | 1+(−1.95+1.42i)T+(24.4−75.1i)T2 |
| 83 | 1+(−3.66−2.66i)T+(25.6+78.9i)T2 |
| 89 | 1−2.46T+89T2 |
| 97 | 1+(11.1−8.06i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.647488936837829380543902266728, −8.887697218946953342946203976823, −7.74856209544487804931098401105, −7.11909870531731466384954114392, −6.37566230455774823185720357889, −5.53511989464766170654969055578, −4.45892606660809449956476477310, −2.80216734870516798793046712332, −1.95971175837046930014716861527, −0.28802360970746959906791391214,
2.00376000154456963888711008251, 3.38180649700657143863659282527, 4.59664344102306633169578775674, 5.02506210280135076867837148641, 6.01727575645440070828217315253, 7.14151938549471722883588905433, 8.153055751877517771621777281833, 9.093940753449519282460001403725, 9.936831157011614391650910052195, 10.41243538461290658481830767828