L(s) = 1 | + (−0.529 + 1.62i)3-s + (0.809 − 0.587i)5-s + (−1.14 − 3.52i)7-s + (0.0536 + 0.0389i)9-s + (−2.68 + 1.94i)11-s + (0.952 + 0.692i)13-s + (0.529 + 1.62i)15-s + (4.36 − 3.17i)17-s + (1.18 − 3.65i)19-s + 6.34·21-s + 8.68·23-s + (0.309 − 0.951i)25-s + (−4.24 + 3.08i)27-s + (−2.12 − 6.53i)29-s + (7.08 + 5.14i)31-s + ⋯ |
L(s) = 1 | + (−0.305 + 0.940i)3-s + (0.361 − 0.262i)5-s + (−0.432 − 1.33i)7-s + (0.0178 + 0.0129i)9-s + (−0.810 + 0.585i)11-s + (0.264 + 0.191i)13-s + (0.136 + 0.420i)15-s + (1.05 − 0.769i)17-s + (0.272 − 0.839i)19-s + 1.38·21-s + 1.81·23-s + (0.0618 − 0.190i)25-s + (−0.817 + 0.594i)27-s + (−0.394 − 1.21i)29-s + (1.27 + 0.924i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0206i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0206i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46702 + 0.0151531i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46702 + 0.0151531i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (2.68 - 1.94i)T \) |
good | 3 | \( 1 + (0.529 - 1.62i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (1.14 + 3.52i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-0.952 - 0.692i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.36 + 3.17i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.18 + 3.65i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 8.68T + 23T^{2} \) |
| 29 | \( 1 + (2.12 + 6.53i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-7.08 - 5.14i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.696 - 2.14i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.493 + 1.51i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 4.11T + 43T^{2} \) |
| 47 | \( 1 + (-3.91 + 12.0i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-10.0 - 7.27i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.121 - 0.374i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (1.45 - 1.05i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 14.3T + 67T^{2} \) |
| 71 | \( 1 + (5.54 - 4.02i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-3.10 - 9.56i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (0.901 + 0.654i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.0140 + 0.0101i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 8.49T + 89T^{2} \) |
| 97 | \( 1 + (8.50 + 6.18i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.977594936828869547794769026406, −9.771342812357913233112602303310, −8.613663049774648429577697359287, −7.35753528003260948837647022914, −6.92560663873292625204511944421, −5.42851477283673468607801903771, −4.83868485731211605093477501688, −3.96195757863562109447506473000, −2.81207590913558847250912048115, −0.911416885261561487896070151605,
1.19565574960920464737606746182, 2.52854666005754416282488818944, 3.43291701645815627572933881042, 5.27873287334432058356071670836, 5.86282266250004501275117678070, 6.53321568154535794901707201465, 7.59424945243083614328021437332, 8.347298224645001258267515195103, 9.279739187375656034973836881718, 10.12928589997160058287104293080