Properties

Label 2-880-11.4-c1-0-11
Degree 22
Conductor 880880
Sign 0.9990.0206i0.999 - 0.0206i
Analytic cond. 7.026837.02683
Root an. cond. 2.650812.65081
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.529 + 1.62i)3-s + (0.809 − 0.587i)5-s + (−1.14 − 3.52i)7-s + (0.0536 + 0.0389i)9-s + (−2.68 + 1.94i)11-s + (0.952 + 0.692i)13-s + (0.529 + 1.62i)15-s + (4.36 − 3.17i)17-s + (1.18 − 3.65i)19-s + 6.34·21-s + 8.68·23-s + (0.309 − 0.951i)25-s + (−4.24 + 3.08i)27-s + (−2.12 − 6.53i)29-s + (7.08 + 5.14i)31-s + ⋯
L(s)  = 1  + (−0.305 + 0.940i)3-s + (0.361 − 0.262i)5-s + (−0.432 − 1.33i)7-s + (0.0178 + 0.0129i)9-s + (−0.810 + 0.585i)11-s + (0.264 + 0.191i)13-s + (0.136 + 0.420i)15-s + (1.05 − 0.769i)17-s + (0.272 − 0.839i)19-s + 1.38·21-s + 1.81·23-s + (0.0618 − 0.190i)25-s + (−0.817 + 0.594i)27-s + (−0.394 − 1.21i)29-s + (1.27 + 0.924i)31-s + ⋯

Functional equation

Λ(s)=(880s/2ΓC(s)L(s)=((0.9990.0206i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0206i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(880s/2ΓC(s+1/2)L(s)=((0.9990.0206i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0206i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 880880    =    245112^{4} \cdot 5 \cdot 11
Sign: 0.9990.0206i0.999 - 0.0206i
Analytic conductor: 7.026837.02683
Root analytic conductor: 2.650812.65081
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ880(81,)\chi_{880} (81, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 880, ( :1/2), 0.9990.0206i)(2,\ 880,\ (\ :1/2),\ 0.999 - 0.0206i)

Particular Values

L(1)L(1) \approx 1.46702+0.0151531i1.46702 + 0.0151531i
L(12)L(\frac12) \approx 1.46702+0.0151531i1.46702 + 0.0151531i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1+(0.809+0.587i)T 1 + (-0.809 + 0.587i)T
11 1+(2.681.94i)T 1 + (2.68 - 1.94i)T
good3 1+(0.5291.62i)T+(2.421.76i)T2 1 + (0.529 - 1.62i)T + (-2.42 - 1.76i)T^{2}
7 1+(1.14+3.52i)T+(5.66+4.11i)T2 1 + (1.14 + 3.52i)T + (-5.66 + 4.11i)T^{2}
13 1+(0.9520.692i)T+(4.01+12.3i)T2 1 + (-0.952 - 0.692i)T + (4.01 + 12.3i)T^{2}
17 1+(4.36+3.17i)T+(5.2516.1i)T2 1 + (-4.36 + 3.17i)T + (5.25 - 16.1i)T^{2}
19 1+(1.18+3.65i)T+(15.311.1i)T2 1 + (-1.18 + 3.65i)T + (-15.3 - 11.1i)T^{2}
23 18.68T+23T2 1 - 8.68T + 23T^{2}
29 1+(2.12+6.53i)T+(23.4+17.0i)T2 1 + (2.12 + 6.53i)T + (-23.4 + 17.0i)T^{2}
31 1+(7.085.14i)T+(9.57+29.4i)T2 1 + (-7.08 - 5.14i)T + (9.57 + 29.4i)T^{2}
37 1+(0.6962.14i)T+(29.9+21.7i)T2 1 + (-0.696 - 2.14i)T + (-29.9 + 21.7i)T^{2}
41 1+(0.493+1.51i)T+(33.124.0i)T2 1 + (-0.493 + 1.51i)T + (-33.1 - 24.0i)T^{2}
43 1+4.11T+43T2 1 + 4.11T + 43T^{2}
47 1+(3.91+12.0i)T+(38.027.6i)T2 1 + (-3.91 + 12.0i)T + (-38.0 - 27.6i)T^{2}
53 1+(10.07.27i)T+(16.3+50.4i)T2 1 + (-10.0 - 7.27i)T + (16.3 + 50.4i)T^{2}
59 1+(0.1210.374i)T+(47.7+34.6i)T2 1 + (-0.121 - 0.374i)T + (-47.7 + 34.6i)T^{2}
61 1+(1.451.05i)T+(18.858.0i)T2 1 + (1.45 - 1.05i)T + (18.8 - 58.0i)T^{2}
67 114.3T+67T2 1 - 14.3T + 67T^{2}
71 1+(5.544.02i)T+(21.967.5i)T2 1 + (5.54 - 4.02i)T + (21.9 - 67.5i)T^{2}
73 1+(3.109.56i)T+(59.0+42.9i)T2 1 + (-3.10 - 9.56i)T + (-59.0 + 42.9i)T^{2}
79 1+(0.901+0.654i)T+(24.4+75.1i)T2 1 + (0.901 + 0.654i)T + (24.4 + 75.1i)T^{2}
83 1+(0.0140+0.0101i)T+(25.678.9i)T2 1 + (-0.0140 + 0.0101i)T + (25.6 - 78.9i)T^{2}
89 1+8.49T+89T2 1 + 8.49T + 89T^{2}
97 1+(8.50+6.18i)T+(29.9+92.2i)T2 1 + (8.50 + 6.18i)T + (29.9 + 92.2i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.977594936828869547794769026406, −9.771342812357913233112602303310, −8.613663049774648429577697359287, −7.35753528003260948837647022914, −6.92560663873292625204511944421, −5.42851477283673468607801903771, −4.83868485731211605093477501688, −3.96195757863562109447506473000, −2.81207590913558847250912048115, −0.911416885261561487896070151605, 1.19565574960920464737606746182, 2.52854666005754416282488818944, 3.43291701645815627572933881042, 5.27873287334432058356071670836, 5.86282266250004501275117678070, 6.53321568154535794901707201465, 7.59424945243083614328021437332, 8.347298224645001258267515195103, 9.279739187375656034973836881718, 10.12928589997160058287104293080

Graph of the ZZ-function along the critical line