L(s) = 1 | + (0.382 + 0.923i)2-s + (−0.707 + 0.707i)4-s + (−0.707 − 0.707i)5-s − 1.84i·7-s + (−0.923 − 0.382i)8-s − i·9-s + (0.382 − 0.923i)10-s + (0.707 + 0.707i)11-s + (0.541 − 0.541i)13-s + (1.70 − 0.707i)14-s − i·16-s − 1.84·17-s + (0.923 − 0.382i)18-s + 20-s + (−0.382 + 0.923i)22-s + ⋯ |
L(s) = 1 | + (0.382 + 0.923i)2-s + (−0.707 + 0.707i)4-s + (−0.707 − 0.707i)5-s − 1.84i·7-s + (−0.923 − 0.382i)8-s − i·9-s + (0.382 − 0.923i)10-s + (0.707 + 0.707i)11-s + (0.541 − 0.541i)13-s + (1.70 − 0.707i)14-s − i·16-s − 1.84·17-s + (0.923 − 0.382i)18-s + 20-s + (−0.382 + 0.923i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9115243862\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9115243862\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.382 - 0.923i)T \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
| 11 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + iT^{2} \) |
| 7 | \( 1 + 1.84iT - T^{2} \) |
| 13 | \( 1 + (-0.541 + 0.541i)T - iT^{2} \) |
| 17 | \( 1 + 1.84T + T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 - 1.41T + T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-0.541 - 0.541i)T + iT^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (-1 - i)T + iT^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 0.765iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + (-0.541 + 0.541i)T - iT^{2} \) |
| 89 | \( 1 + 1.41iT - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14116467977209160856810274355, −9.194834425369681202046987078405, −8.496079846234672744608736262822, −7.55520798004073183439004841688, −6.88806292864585451565597393224, −6.23238337400201302253926947275, −4.61028788055395280777988256512, −4.26095014235518550331410840573, −3.47199629017169076450937678846, −0.849011788600262656333846009145,
2.09254557958524630802819860473, 2.77279684190790592427889792415, 3.97619091097436231611158366179, 4.91201159245240035122019326362, 5.99956897193382390726023431235, 6.66861297413990225866766768659, 8.381361929225828828507498587966, 8.652363280369511581114386973629, 9.589675390935455025418666690046, 10.78454434378518778108125486067