L(s) = 1 | + (0.382 + 0.923i)2-s + (−0.707 + 0.707i)4-s + (−0.707 − 0.707i)5-s − 1.84i·7-s + (−0.923 − 0.382i)8-s − i·9-s + (0.382 − 0.923i)10-s + (0.707 + 0.707i)11-s + (0.541 − 0.541i)13-s + (1.70 − 0.707i)14-s − i·16-s − 1.84·17-s + (0.923 − 0.382i)18-s + 20-s + (−0.382 + 0.923i)22-s + ⋯ |
L(s) = 1 | + (0.382 + 0.923i)2-s + (−0.707 + 0.707i)4-s + (−0.707 − 0.707i)5-s − 1.84i·7-s + (−0.923 − 0.382i)8-s − i·9-s + (0.382 − 0.923i)10-s + (0.707 + 0.707i)11-s + (0.541 − 0.541i)13-s + (1.70 − 0.707i)14-s − i·16-s − 1.84·17-s + (0.923 − 0.382i)18-s + 20-s + (−0.382 + 0.923i)22-s + ⋯ |
Λ(s)=(=(880s/2ΓC(s)L(s)(0.923+0.382i)Λ(1−s)
Λ(s)=(=(880s/2ΓC(s)L(s)(0.923+0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
880
= 24⋅5⋅11
|
Sign: |
0.923+0.382i
|
Analytic conductor: |
0.439177 |
Root analytic conductor: |
0.662704 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ880(549,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 880, ( :0), 0.923+0.382i)
|
Particular Values
L(21) |
≈ |
0.9115243862 |
L(21) |
≈ |
0.9115243862 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.382−0.923i)T |
| 5 | 1+(0.707+0.707i)T |
| 11 | 1+(−0.707−0.707i)T |
good | 3 | 1+iT2 |
| 7 | 1+1.84iT−T2 |
| 13 | 1+(−0.541+0.541i)T−iT2 |
| 17 | 1+1.84T+T2 |
| 19 | 1+iT2 |
| 23 | 1+T2 |
| 29 | 1+iT2 |
| 31 | 1−1.41T+T2 |
| 37 | 1−iT2 |
| 41 | 1+T2 |
| 43 | 1+(−0.541−0.541i)T+iT2 |
| 47 | 1−T2 |
| 53 | 1−iT2 |
| 59 | 1+(−1−i)T+iT2 |
| 61 | 1+iT2 |
| 67 | 1+iT2 |
| 71 | 1−T2 |
| 73 | 1+0.765iT−T2 |
| 79 | 1−T2 |
| 83 | 1+(−0.541+0.541i)T−iT2 |
| 89 | 1+1.41iT−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14116467977209160856810274355, −9.194834425369681202046987078405, −8.496079846234672744608736262822, −7.55520798004073183439004841688, −6.88806292864585451565597393224, −6.23238337400201302253926947275, −4.61028788055395280777988256512, −4.26095014235518550331410840573, −3.47199629017169076450937678846, −0.849011788600262656333846009145,
2.09254557958524630802819860473, 2.77279684190790592427889792415, 3.97619091097436231611158366179, 4.91201159245240035122019326362, 5.99956897193382390726023431235, 6.66861297413990225866766768659, 8.381361929225828828507498587966, 8.652363280369511581114386973629, 9.589675390935455025418666690046, 10.78454434378518778108125486067