L(s) = 1 | − 3·3-s + 3·7-s + 6·9-s − 11-s − 4·13-s + 7·17-s − 3·19-s − 9·21-s − 9·27-s + 7·29-s + 3·31-s + 3·33-s − 9·37-s + 12·39-s − 4·41-s − 6·43-s − 12·47-s + 2·49-s − 21·51-s + 7·53-s + 9·57-s + 12·59-s + 61-s + 18·63-s − 12·67-s + 9·71-s + 2·73-s + ⋯ |
L(s) = 1 | − 1.73·3-s + 1.13·7-s + 2·9-s − 0.301·11-s − 1.10·13-s + 1.69·17-s − 0.688·19-s − 1.96·21-s − 1.73·27-s + 1.29·29-s + 0.538·31-s + 0.522·33-s − 1.47·37-s + 1.92·39-s − 0.624·41-s − 0.914·43-s − 1.75·47-s + 2/7·49-s − 2.94·51-s + 0.961·53-s + 1.19·57-s + 1.56·59-s + 0.128·61-s + 2.26·63-s − 1.46·67-s + 1.06·71-s + 0.234·73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 + T \) |
good | 3 | \( 1 + p T + p T^{2} \) |
| 7 | \( 1 - 3 T + p T^{2} \) |
| 13 | \( 1 + 4 T + p T^{2} \) |
| 17 | \( 1 - 7 T + p T^{2} \) |
| 19 | \( 1 + 3 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 - 7 T + p T^{2} \) |
| 31 | \( 1 - 3 T + p T^{2} \) |
| 37 | \( 1 + 9 T + p T^{2} \) |
| 41 | \( 1 + 4 T + p T^{2} \) |
| 43 | \( 1 + 6 T + p T^{2} \) |
| 47 | \( 1 + 12 T + p T^{2} \) |
| 53 | \( 1 - 7 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 - T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 - 9 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 + 12 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 + 7 T + p T^{2} \) |
| 97 | \( 1 - 8 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.16563472775969471348455457448, −6.77709962632504940122183775431, −5.87317627869163144373234120959, −5.18367221616459560452710696971, −4.96846666168592226363450444810, −4.23231658118273547411260964461, −3.08569747085328047651116679020, −1.87511194260782983356744326004, −1.09596217990125069100252676038, 0,
1.09596217990125069100252676038, 1.87511194260782983356744326004, 3.08569747085328047651116679020, 4.23231658118273547411260964461, 4.96846666168592226363450444810, 5.18367221616459560452710696971, 5.87317627869163144373234120959, 6.77709962632504940122183775431, 7.16563472775969471348455457448