Properties

Label 2-8800-1.1-c1-0-136
Degree $2$
Conductor $8800$
Sign $-1$
Analytic cond. $70.2683$
Root an. cond. $8.38262$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s − 2·9-s + 11-s + 2·13-s + 5·17-s − 7·19-s − 21-s + 6·23-s + 5·27-s − 29-s − 5·31-s − 33-s − 11·37-s − 2·39-s + 2·41-s − 4·43-s − 6·47-s − 6·49-s − 5·51-s + 53-s + 7·57-s − 10·59-s + 5·61-s − 2·63-s + 8·67-s − 6·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s − 2/3·9-s + 0.301·11-s + 0.554·13-s + 1.21·17-s − 1.60·19-s − 0.218·21-s + 1.25·23-s + 0.962·27-s − 0.185·29-s − 0.898·31-s − 0.174·33-s − 1.80·37-s − 0.320·39-s + 0.312·41-s − 0.609·43-s − 0.875·47-s − 6/7·49-s − 0.700·51-s + 0.137·53-s + 0.927·57-s − 1.30·59-s + 0.640·61-s − 0.251·63-s + 0.977·67-s − 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8800\)    =    \(2^{5} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(70.2683\)
Root analytic conductor: \(8.38262\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 + 5 T + p T^{2} \)
37 \( 1 + 11 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 - 5 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 17 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.33563938941148056826061674084, −6.59295231671976519886053935963, −6.09211837337601353679537134214, −5.24424507160539686377725717788, −4.89413338908764577870067948724, −3.76126076913644485330927767443, −3.21767878271010981425020671998, −2.08159258772918235229012105266, −1.18706386338281584187335642323, 0, 1.18706386338281584187335642323, 2.08159258772918235229012105266, 3.21767878271010981425020671998, 3.76126076913644485330927767443, 4.89413338908764577870067948724, 5.24424507160539686377725717788, 6.09211837337601353679537134214, 6.59295231671976519886053935963, 7.33563938941148056826061674084

Graph of the $Z$-function along the critical line