Properties

Label 2-882-1.1-c1-0-13
Degree $2$
Conductor $882$
Sign $-1$
Analytic cond. $7.04280$
Root an. cond. $2.65382$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 1.41·5-s − 8-s + 1.41·10-s − 4·11-s + 4.24·13-s + 16-s + 7.07·17-s − 5.65·19-s − 1.41·20-s + 4·22-s − 8·23-s − 2.99·25-s − 4.24·26-s − 2·29-s − 32-s − 7.07·34-s + 4·37-s + 5.65·38-s + 1.41·40-s − 9.89·41-s − 4·43-s − 4·44-s + 8·46-s − 5.65·47-s + 2.99·50-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.632·5-s − 0.353·8-s + 0.447·10-s − 1.20·11-s + 1.17·13-s + 0.250·16-s + 1.71·17-s − 1.29·19-s − 0.316·20-s + 0.852·22-s − 1.66·23-s − 0.599·25-s − 0.832·26-s − 0.371·29-s − 0.176·32-s − 1.21·34-s + 0.657·37-s + 0.917·38-s + 0.223·40-s − 1.54·41-s − 0.609·43-s − 0.603·44-s + 1.17·46-s − 0.825·47-s + 0.424·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(7.04280\)
Root analytic conductor: \(2.65382\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 882,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 1.41T + 5T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 - 4.24T + 13T^{2} \)
17 \( 1 - 7.07T + 17T^{2} \)
19 \( 1 + 5.65T + 19T^{2} \)
23 \( 1 + 8T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 4T + 37T^{2} \)
41 \( 1 + 9.89T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 5.65T + 47T^{2} \)
53 \( 1 + 4T + 53T^{2} \)
59 \( 1 - 11.3T + 59T^{2} \)
61 \( 1 - 1.41T + 61T^{2} \)
67 \( 1 + 12T + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 15.5T + 73T^{2} \)
79 \( 1 + 16T + 79T^{2} \)
83 \( 1 - 5.65T + 83T^{2} \)
89 \( 1 + 7.07T + 89T^{2} \)
97 \( 1 - 7.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.01720571963695241720881608827, −8.589941487088499416010561886341, −8.118049983618376092738830727856, −7.50287723561590050483594281799, −6.27011586922826886014853818576, −5.52792116357709787421509266144, −4.11473716940554774137568040594, −3.15874985183319832516167178509, −1.73758245242588432787724477923, 0, 1.73758245242588432787724477923, 3.15874985183319832516167178509, 4.11473716940554774137568040594, 5.52792116357709787421509266144, 6.27011586922826886014853818576, 7.50287723561590050483594281799, 8.118049983618376092738830727856, 8.589941487088499416010561886341, 10.01720571963695241720881608827

Graph of the $Z$-function along the critical line