Properties

Label 2-882-1.1-c3-0-0
Degree $2$
Conductor $882$
Sign $1$
Analytic cond. $52.0396$
Root an. cond. $7.21385$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s − 15.8·5-s − 8·8-s + 31.6·10-s − 51.8·11-s − 38.8·13-s + 16·16-s + 27.3·17-s − 76.5·19-s − 63.3·20-s + 103.·22-s − 147.·23-s + 125.·25-s + 77.6·26-s − 240.·29-s + 296.·31-s − 32·32-s − 54.6·34-s − 161.·37-s + 153.·38-s + 126.·40-s − 102.·41-s − 328.·43-s − 207.·44-s + 294.·46-s + 67.9·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.41·5-s − 0.353·8-s + 1.00·10-s − 1.42·11-s − 0.828·13-s + 0.250·16-s + 0.390·17-s − 0.923·19-s − 0.708·20-s + 1.00·22-s − 1.33·23-s + 1.00·25-s + 0.585·26-s − 1.53·29-s + 1.71·31-s − 0.176·32-s − 0.275·34-s − 0.717·37-s + 0.653·38-s + 0.500·40-s − 0.392·41-s − 1.16·43-s − 0.710·44-s + 0.944·46-s + 0.210·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(52.0396\)
Root analytic conductor: \(7.21385\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.2385219501\)
\(L(\frac12)\) \(\approx\) \(0.2385219501\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 15.8T + 125T^{2} \)
11 \( 1 + 51.8T + 1.33e3T^{2} \)
13 \( 1 + 38.8T + 2.19e3T^{2} \)
17 \( 1 - 27.3T + 4.91e3T^{2} \)
19 \( 1 + 76.5T + 6.85e3T^{2} \)
23 \( 1 + 147.T + 1.21e4T^{2} \)
29 \( 1 + 240.T + 2.43e4T^{2} \)
31 \( 1 - 296.T + 2.97e4T^{2} \)
37 \( 1 + 161.T + 5.06e4T^{2} \)
41 \( 1 + 102.T + 6.89e4T^{2} \)
43 \( 1 + 328.T + 7.95e4T^{2} \)
47 \( 1 - 67.9T + 1.03e5T^{2} \)
53 \( 1 - 66.4T + 1.48e5T^{2} \)
59 \( 1 + 461.T + 2.05e5T^{2} \)
61 \( 1 + 185.T + 2.26e5T^{2} \)
67 \( 1 - 545.T + 3.00e5T^{2} \)
71 \( 1 - 130.T + 3.57e5T^{2} \)
73 \( 1 + 181.T + 3.89e5T^{2} \)
79 \( 1 + 409.T + 4.93e5T^{2} \)
83 \( 1 - 347.T + 5.71e5T^{2} \)
89 \( 1 - 1.15e3T + 7.04e5T^{2} \)
97 \( 1 + 1.61e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.920760678026263954522944325170, −8.687005971344750862646124584750, −7.893452890775865171720399343145, −7.65111755265060495970696936680, −6.55687947172848721711430682831, −5.32852797218403187572843427200, −4.30722919275791766187054369466, −3.21461499887703329325054823246, −2.09407121541824752779551192959, −0.27849165999967960918650292112, 0.27849165999967960918650292112, 2.09407121541824752779551192959, 3.21461499887703329325054823246, 4.30722919275791766187054369466, 5.32852797218403187572843427200, 6.55687947172848721711430682831, 7.65111755265060495970696936680, 7.893452890775865171720399343145, 8.687005971344750862646124584750, 9.920760678026263954522944325170

Graph of the $Z$-function along the critical line