Properties

Label 2-882-1.1-c3-0-13
Degree $2$
Conductor $882$
Sign $1$
Analytic cond. $52.0396$
Root an. cond. $7.21385$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s − 3.44·5-s + 8·8-s − 6.89·10-s − 36.1·11-s − 10.2·13-s + 16·16-s + 118.·17-s + 38.6·19-s − 13.7·20-s − 72.2·22-s + 36.2·23-s − 113.·25-s − 20.4·26-s + 12.1·29-s + 145.·31-s + 32·32-s + 236.·34-s − 1.37·37-s + 77.3·38-s − 27.5·40-s + 168·41-s + 299.·43-s − 144.·44-s + 72.4·46-s + 502.·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 0.308·5-s + 0.353·8-s − 0.217·10-s − 0.990·11-s − 0.218·13-s + 0.250·16-s + 1.69·17-s + 0.466·19-s − 0.154·20-s − 0.700·22-s + 0.328·23-s − 0.904·25-s − 0.154·26-s + 0.0776·29-s + 0.842·31-s + 0.176·32-s + 1.19·34-s − 0.00609·37-s + 0.330·38-s − 0.108·40-s + 0.639·41-s + 1.06·43-s − 0.495·44-s + 0.232·46-s + 1.56·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(52.0396\)
Root analytic conductor: \(7.21385\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.062400258\)
\(L(\frac12)\) \(\approx\) \(3.062400258\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 3.44T + 125T^{2} \)
11 \( 1 + 36.1T + 1.33e3T^{2} \)
13 \( 1 + 10.2T + 2.19e3T^{2} \)
17 \( 1 - 118.T + 4.91e3T^{2} \)
19 \( 1 - 38.6T + 6.85e3T^{2} \)
23 \( 1 - 36.2T + 1.21e4T^{2} \)
29 \( 1 - 12.1T + 2.43e4T^{2} \)
31 \( 1 - 145.T + 2.97e4T^{2} \)
37 \( 1 + 1.37T + 5.06e4T^{2} \)
41 \( 1 - 168T + 6.89e4T^{2} \)
43 \( 1 - 299.T + 7.95e4T^{2} \)
47 \( 1 - 502.T + 1.03e5T^{2} \)
53 \( 1 - 625.T + 1.48e5T^{2} \)
59 \( 1 + 42.2T + 2.05e5T^{2} \)
61 \( 1 - 439.T + 2.26e5T^{2} \)
67 \( 1 + 763.T + 3.00e5T^{2} \)
71 \( 1 + 1.02e3T + 3.57e5T^{2} \)
73 \( 1 + 579.T + 3.89e5T^{2} \)
79 \( 1 - 942.T + 4.93e5T^{2} \)
83 \( 1 + 474.T + 5.71e5T^{2} \)
89 \( 1 - 821.T + 7.04e5T^{2} \)
97 \( 1 - 1.10e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03803170006646590271638951988, −8.857692341334340253098475684309, −7.63881009103077876018362556518, −7.46811562653675112526241842432, −5.98703332250907106742164165093, −5.40642832280840336912521422771, −4.38375003381521360112231310915, −3.34908533914813252848959114073, −2.43574305680165991560157288464, −0.873397623437876555672511769782, 0.873397623437876555672511769782, 2.43574305680165991560157288464, 3.34908533914813252848959114073, 4.38375003381521360112231310915, 5.40642832280840336912521422771, 5.98703332250907106742164165093, 7.46811562653675112526241842432, 7.63881009103077876018362556518, 8.857692341334340253098475684309, 10.03803170006646590271638951988

Graph of the $Z$-function along the critical line