L(s) = 1 | + 2·2-s + 4·4-s + 3.89·5-s + 8·8-s + 7.79·10-s + 61.3·11-s + 53.6·13-s + 16·16-s − 32.1·17-s − 55.7·19-s + 15.5·20-s + 122.·22-s + 94.6·23-s − 109.·25-s + 107.·26-s − 138.·29-s + 132.·31-s + 32·32-s − 64.2·34-s + 149.·37-s − 111.·38-s + 31.1·40-s − 427.·41-s + 437.·43-s + 245.·44-s + 189.·46-s − 57.0·47-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + 0.348·5-s + 0.353·8-s + 0.246·10-s + 1.68·11-s + 1.14·13-s + 0.250·16-s − 0.457·17-s − 0.673·19-s + 0.174·20-s + 1.18·22-s + 0.857·23-s − 0.878·25-s + 0.810·26-s − 0.884·29-s + 0.768·31-s + 0.176·32-s − 0.323·34-s + 0.662·37-s − 0.476·38-s + 0.123·40-s − 1.62·41-s + 1.55·43-s + 0.841·44-s + 0.606·46-s − 0.176·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(4.183962545\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.183962545\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 2T \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 3.89T + 125T^{2} \) |
| 11 | \( 1 - 61.3T + 1.33e3T^{2} \) |
| 13 | \( 1 - 53.6T + 2.19e3T^{2} \) |
| 17 | \( 1 + 32.1T + 4.91e3T^{2} \) |
| 19 | \( 1 + 55.7T + 6.85e3T^{2} \) |
| 23 | \( 1 - 94.6T + 1.21e4T^{2} \) |
| 29 | \( 1 + 138.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 132.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 149.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 427.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 437.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 57.0T + 1.03e5T^{2} \) |
| 53 | \( 1 - 263.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 451.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 579.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 309.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 1.05e3T + 3.57e5T^{2} \) |
| 73 | \( 1 - 1.19e3T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.31e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.19e3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 233.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.60e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.673909963371567744027155876366, −8.982511517731042136714813613000, −8.077141912333788968308416159450, −6.74607890087432979379391441848, −6.37923351868109786886332290783, −5.40297935990100448087521989103, −4.18504720589276411828160448098, −3.60816492098508621445407491030, −2.17277254734488591049556046602, −1.09777607819790063697322233089,
1.09777607819790063697322233089, 2.17277254734488591049556046602, 3.60816492098508621445407491030, 4.18504720589276411828160448098, 5.40297935990100448087521989103, 6.37923351868109786886332290783, 6.74607890087432979379391441848, 8.077141912333788968308416159450, 8.982511517731042136714813613000, 9.673909963371567744027155876366