Properties

Label 2-882-1.1-c3-0-33
Degree $2$
Conductor $882$
Sign $-1$
Analytic cond. $52.0396$
Root an. cond. $7.21385$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 4·4-s + 4.58·5-s − 8·8-s − 9.17·10-s + 6.48·11-s − 45.2·13-s + 16·16-s + 81.5·17-s + 5.05·19-s + 18.3·20-s − 12.9·22-s − 106.·23-s − 103.·25-s + 90.4·26-s + 268.·29-s − 292.·31-s − 32·32-s − 163.·34-s + 114.·37-s − 10.1·38-s − 36.6·40-s − 161.·41-s − 471.·43-s + 25.9·44-s + 212.·46-s + 346.·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 0.410·5-s − 0.353·8-s − 0.290·10-s + 0.177·11-s − 0.964·13-s + 0.250·16-s + 1.16·17-s + 0.0610·19-s + 0.205·20-s − 0.125·22-s − 0.963·23-s − 0.831·25-s + 0.682·26-s + 1.71·29-s − 1.69·31-s − 0.176·32-s − 0.822·34-s + 0.509·37-s − 0.0431·38-s − 0.145·40-s − 0.615·41-s − 1.67·43-s + 0.0888·44-s + 0.681·46-s + 1.07·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(52.0396\)
Root analytic conductor: \(7.21385\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 882,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 2T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 4.58T + 125T^{2} \)
11 \( 1 - 6.48T + 1.33e3T^{2} \)
13 \( 1 + 45.2T + 2.19e3T^{2} \)
17 \( 1 - 81.5T + 4.91e3T^{2} \)
19 \( 1 - 5.05T + 6.85e3T^{2} \)
23 \( 1 + 106.T + 1.21e4T^{2} \)
29 \( 1 - 268.T + 2.43e4T^{2} \)
31 \( 1 + 292.T + 2.97e4T^{2} \)
37 \( 1 - 114.T + 5.06e4T^{2} \)
41 \( 1 + 161.T + 6.89e4T^{2} \)
43 \( 1 + 471.T + 7.95e4T^{2} \)
47 \( 1 - 346.T + 1.03e5T^{2} \)
53 \( 1 + 405.T + 1.48e5T^{2} \)
59 \( 1 + 253.T + 2.05e5T^{2} \)
61 \( 1 - 751.T + 2.26e5T^{2} \)
67 \( 1 - 11.6T + 3.00e5T^{2} \)
71 \( 1 - 681.T + 3.57e5T^{2} \)
73 \( 1 + 685.T + 3.89e5T^{2} \)
79 \( 1 - 0.264T + 4.93e5T^{2} \)
83 \( 1 + 437.T + 5.71e5T^{2} \)
89 \( 1 + 58.5T + 7.04e5T^{2} \)
97 \( 1 - 1.28e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.599565989586647906717744167688, −8.451148238818894511191537357510, −7.74620278928510678559336029065, −6.88483501170140171596040817226, −5.92826087059954899252565624188, −5.05225765678717653038698737627, −3.69210546625416640933482738414, −2.50146362503905051724246523165, −1.43187017613334314839745591501, 0, 1.43187017613334314839745591501, 2.50146362503905051724246523165, 3.69210546625416640933482738414, 5.05225765678717653038698737627, 5.92826087059954899252565624188, 6.88483501170140171596040817226, 7.74620278928510678559336029065, 8.451148238818894511191537357510, 9.599565989586647906717744167688

Graph of the $Z$-function along the critical line