Properties

Label 2-882-1.1-c5-0-12
Degree $2$
Conductor $882$
Sign $1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16·4-s − 54·5-s + 64·8-s − 216·10-s − 216·11-s − 998·13-s + 256·16-s + 1.30e3·17-s − 884·19-s − 864·20-s − 864·22-s + 2.26e3·23-s − 209·25-s − 3.99e3·26-s + 1.48e3·29-s − 8.36e3·31-s + 1.02e3·32-s + 5.20e3·34-s − 4.71e3·37-s − 3.53e3·38-s − 3.45e3·40-s − 9.78e3·41-s + 1.94e4·43-s − 3.45e3·44-s + 9.07e3·46-s + 2.22e4·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.965·5-s + 0.353·8-s − 0.683·10-s − 0.538·11-s − 1.63·13-s + 1/4·16-s + 1.09·17-s − 0.561·19-s − 0.482·20-s − 0.380·22-s + 0.893·23-s − 0.0668·25-s − 1.15·26-s + 0.327·29-s − 1.56·31-s + 0.176·32-s + 0.772·34-s − 0.566·37-s − 0.397·38-s − 0.341·40-s − 0.909·41-s + 1.60·43-s − 0.269·44-s + 0.632·46-s + 1.46·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.027939288\)
\(L(\frac12)\) \(\approx\) \(2.027939288\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 54 T + p^{5} T^{2} \)
11 \( 1 + 216 T + p^{5} T^{2} \)
13 \( 1 + 998 T + p^{5} T^{2} \)
17 \( 1 - 1302 T + p^{5} T^{2} \)
19 \( 1 + 884 T + p^{5} T^{2} \)
23 \( 1 - 2268 T + p^{5} T^{2} \)
29 \( 1 - 1482 T + p^{5} T^{2} \)
31 \( 1 + 8360 T + p^{5} T^{2} \)
37 \( 1 + 4714 T + p^{5} T^{2} \)
41 \( 1 + 9786 T + p^{5} T^{2} \)
43 \( 1 - 452 p T + p^{5} T^{2} \)
47 \( 1 - 22200 T + p^{5} T^{2} \)
53 \( 1 + 26790 T + p^{5} T^{2} \)
59 \( 1 - 28092 T + p^{5} T^{2} \)
61 \( 1 - 38866 T + p^{5} T^{2} \)
67 \( 1 - 23948 T + p^{5} T^{2} \)
71 \( 1 - 20628 T + p^{5} T^{2} \)
73 \( 1 + 290 T + p^{5} T^{2} \)
79 \( 1 + 99544 T + p^{5} T^{2} \)
83 \( 1 - 19308 T + p^{5} T^{2} \)
89 \( 1 - 36390 T + p^{5} T^{2} \)
97 \( 1 - 79078 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.481673445293607525968744034897, −8.329073044194372055585367037436, −7.45178414625982777562523428247, −7.07255066061484694759657086969, −5.65238473017955470153430238735, −4.97375153927564712717965884008, −4.03247901963468113240627206993, −3.12057138598792914481258413149, −2.12904257120314563746148647551, −0.54752015922779193572616104679, 0.54752015922779193572616104679, 2.12904257120314563746148647551, 3.12057138598792914481258413149, 4.03247901963468113240627206993, 4.97375153927564712717965884008, 5.65238473017955470153430238735, 7.07255066061484694759657086969, 7.45178414625982777562523428247, 8.329073044194372055585367037436, 9.481673445293607525968744034897

Graph of the $Z$-function along the critical line