Properties

Label 2-882-1.1-c5-0-8
Degree $2$
Conductor $882$
Sign $1$
Analytic cond. $141.458$
Root an. cond. $11.8936$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 16·4-s + 12·5-s − 64·8-s − 48·10-s − 288·11-s − 737·13-s + 256·16-s − 156·17-s − 617·19-s + 192·20-s + 1.15e3·22-s − 4.59e3·23-s − 2.98e3·25-s + 2.94e3·26-s + 5.30e3·29-s − 2.51e3·31-s − 1.02e3·32-s + 624·34-s + 2.37e3·37-s + 2.46e3·38-s − 768·40-s − 1.42e4·41-s − 1.57e3·43-s − 4.60e3·44-s + 1.83e4·46-s + 1.72e4·47-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.214·5-s − 0.353·8-s − 0.151·10-s − 0.717·11-s − 1.20·13-s + 1/4·16-s − 0.130·17-s − 0.392·19-s + 0.107·20-s + 0.507·22-s − 1.81·23-s − 0.953·25-s + 0.855·26-s + 1.17·29-s − 0.469·31-s − 0.176·32-s + 0.0925·34-s + 0.285·37-s + 0.277·38-s − 0.0758·40-s − 1.32·41-s − 0.130·43-s − 0.358·44-s + 1.28·46-s + 1.14·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(882\)    =    \(2 \cdot 3^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(141.458\)
Root analytic conductor: \(11.8936\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 882,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.7540042991\)
\(L(\frac12)\) \(\approx\) \(0.7540042991\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{2} T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 12 T + p^{5} T^{2} \)
11 \( 1 + 288 T + p^{5} T^{2} \)
13 \( 1 + 737 T + p^{5} T^{2} \)
17 \( 1 + 156 T + p^{5} T^{2} \)
19 \( 1 + 617 T + p^{5} T^{2} \)
23 \( 1 + 4596 T + p^{5} T^{2} \)
29 \( 1 - 5304 T + p^{5} T^{2} \)
31 \( 1 + 2513 T + p^{5} T^{2} \)
37 \( 1 - 2375 T + p^{5} T^{2} \)
41 \( 1 + 14280 T + p^{5} T^{2} \)
43 \( 1 + 1579 T + p^{5} T^{2} \)
47 \( 1 - 17268 T + p^{5} T^{2} \)
53 \( 1 - 18612 T + p^{5} T^{2} \)
59 \( 1 - 28428 T + p^{5} T^{2} \)
61 \( 1 + 15566 T + p^{5} T^{2} \)
67 \( 1 + 8053 T + p^{5} T^{2} \)
71 \( 1 + 13020 T + p^{5} T^{2} \)
73 \( 1 - 50263 T + p^{5} T^{2} \)
79 \( 1 - 30155 T + p^{5} T^{2} \)
83 \( 1 - 99276 T + p^{5} T^{2} \)
89 \( 1 + 52104 T + p^{5} T^{2} \)
97 \( 1 + 116222 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.566618031920247567718798265300, −8.456082409526653507856416202312, −7.84305397562213467701776833876, −6.99162636574207428339691611129, −6.02820126389137101147370890774, −5.12089313603109923458296763406, −3.96970296140917622686554993354, −2.59422144037968830282454713825, −1.91827735482604998162427756769, −0.40941798024380133219812168450, 0.40941798024380133219812168450, 1.91827735482604998162427756769, 2.59422144037968830282454713825, 3.96970296140917622686554993354, 5.12089313603109923458296763406, 6.02820126389137101147370890774, 6.99162636574207428339691611129, 7.84305397562213467701776833876, 8.456082409526653507856416202312, 9.566618031920247567718798265300

Graph of the $Z$-function along the critical line