Properties

Label 2-882-9.7-c1-0-9
Degree 22
Conductor 882882
Sign 0.9990.0334i0.999 - 0.0334i
Analytic cond. 7.042807.04280
Root an. cond. 2.653822.65382
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)2-s + (−0.619 − 1.61i)3-s + (−0.499 − 0.866i)4-s + (1.59 + 2.75i)5-s + (−1.71 − 0.272i)6-s − 0.999·8-s + (−2.23 + 2.00i)9-s + 3.18·10-s + (−1.59 + 2.75i)11-s + (−1.09 + 1.34i)12-s + (2.85 + 4.93i)13-s + (3.47 − 4.28i)15-s + (−0.5 + 0.866i)16-s + 1.52·17-s + (0.619 + 2.93i)18-s + 1.28·19-s + ⋯
L(s)  = 1  + (0.353 − 0.612i)2-s + (−0.357 − 0.933i)3-s + (−0.249 − 0.433i)4-s + (0.711 + 1.23i)5-s + (−0.698 − 0.111i)6-s − 0.353·8-s + (−0.744 + 0.668i)9-s + 1.00·10-s + (−0.479 + 0.830i)11-s + (−0.314 + 0.388i)12-s + (0.790 + 1.36i)13-s + (0.896 − 1.10i)15-s + (−0.125 + 0.216i)16-s + 0.369·17-s + (0.146 + 0.691i)18-s + 0.294·19-s + ⋯

Functional equation

Λ(s)=(882s/2ΓC(s)L(s)=((0.9990.0334i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0334i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(882s/2ΓC(s+1/2)L(s)=((0.9990.0334i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 882 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0334i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 882882    =    232722 \cdot 3^{2} \cdot 7^{2}
Sign: 0.9990.0334i0.999 - 0.0334i
Analytic conductor: 7.042807.04280
Root analytic conductor: 2.653822.65382
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ882(295,)\chi_{882} (295, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 882, ( :1/2), 0.9990.0334i)(2,\ 882,\ (\ :1/2),\ 0.999 - 0.0334i)

Particular Values

L(1)L(1) \approx 1.64054+0.0274690i1.64054 + 0.0274690i
L(12)L(\frac12) \approx 1.64054+0.0274690i1.64054 + 0.0274690i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
3 1+(0.619+1.61i)T 1 + (0.619 + 1.61i)T
7 1 1
good5 1+(1.592.75i)T+(2.5+4.33i)T2 1 + (-1.59 - 2.75i)T + (-2.5 + 4.33i)T^{2}
11 1+(1.592.75i)T+(5.59.52i)T2 1 + (1.59 - 2.75i)T + (-5.5 - 9.52i)T^{2}
13 1+(2.854.93i)T+(6.5+11.2i)T2 1 + (-2.85 - 4.93i)T + (-6.5 + 11.2i)T^{2}
17 11.52T+17T2 1 - 1.52T + 17T^{2}
19 11.28T+19T2 1 - 1.28T + 19T^{2}
23 1+(1.11+1.93i)T+(11.5+19.9i)T2 1 + (1.11 + 1.93i)T + (-11.5 + 19.9i)T^{2}
29 1+(3.546.13i)T+(14.525.1i)T2 1 + (3.54 - 6.13i)T + (-14.5 - 25.1i)T^{2}
31 1+(4.718.15i)T+(15.5+26.8i)T2 1 + (-4.71 - 8.15i)T + (-15.5 + 26.8i)T^{2}
37 1+T+37T2 1 + T + 37T^{2}
41 1+(2.80+4.85i)T+(20.5+35.5i)T2 1 + (2.80 + 4.85i)T + (-20.5 + 35.5i)T^{2}
43 1+(3.41+5.91i)T+(21.537.2i)T2 1 + (-3.41 + 5.91i)T + (-21.5 - 37.2i)T^{2}
47 1+(2.91+5.04i)T+(23.540.7i)T2 1 + (-2.91 + 5.04i)T + (-23.5 - 40.7i)T^{2}
53 1+2.05T+53T2 1 + 2.05T + 53T^{2}
59 1+(0.5620.974i)T+(29.5+51.0i)T2 1 + (-0.562 - 0.974i)T + (-29.5 + 51.0i)T^{2}
61 1+(1.562.70i)T+(30.552.8i)T2 1 + (1.56 - 2.70i)T + (-30.5 - 52.8i)T^{2}
67 1+(5.48+9.49i)T+(33.5+58.0i)T2 1 + (5.48 + 9.49i)T + (-33.5 + 58.0i)T^{2}
71 18.69T+71T2 1 - 8.69T + 71T^{2}
73 14.96T+73T2 1 - 4.96T + 73T^{2}
79 1+(2.06+3.58i)T+(39.568.4i)T2 1 + (-2.06 + 3.58i)T + (-39.5 - 68.4i)T^{2}
83 1+(4.036.98i)T+(41.571.8i)T2 1 + (4.03 - 6.98i)T + (-41.5 - 71.8i)T^{2}
89 1+0.225T+89T2 1 + 0.225T + 89T^{2}
97 1+(7.42+12.8i)T+(48.584.0i)T2 1 + (-7.42 + 12.8i)T + (-48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.58466747969075770155463034181, −9.493704905343100460333267478768, −8.513972313878062558754640963757, −7.16268394521650274742897968641, −6.76615867646802994682505534078, −5.87787895924820000099887063422, −4.92868627411304202468032820975, −3.48578198654754047254959318870, −2.37914616324586324900511781359, −1.60752441804350838460588554488, 0.76691125660843399200042336221, 2.96027653085674315588026649525, 4.04831195630895217181137727373, 5.02841739944039028659275330582, 5.80676516797965043836080470921, 6.01915913539053626085803436887, 7.917761781804951435000711570644, 8.346972004559955260556932598624, 9.372111570723994803297917025874, 9.893037140678974178999666177947

Graph of the ZZ-function along the critical line