L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.619 − 1.61i)3-s + (−0.499 − 0.866i)4-s + (1.59 + 2.75i)5-s + (−1.71 − 0.272i)6-s − 0.999·8-s + (−2.23 + 2.00i)9-s + 3.18·10-s + (−1.59 + 2.75i)11-s + (−1.09 + 1.34i)12-s + (2.85 + 4.93i)13-s + (3.47 − 4.28i)15-s + (−0.5 + 0.866i)16-s + 1.52·17-s + (0.619 + 2.93i)18-s + 1.28·19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.357 − 0.933i)3-s + (−0.249 − 0.433i)4-s + (0.711 + 1.23i)5-s + (−0.698 − 0.111i)6-s − 0.353·8-s + (−0.744 + 0.668i)9-s + 1.00·10-s + (−0.479 + 0.830i)11-s + (−0.314 + 0.388i)12-s + (0.790 + 1.36i)13-s + (0.896 − 1.10i)15-s + (−0.125 + 0.216i)16-s + 0.369·17-s + (0.146 + 0.691i)18-s + 0.294·19-s + ⋯ |
Λ(s)=(=(882s/2ΓC(s)L(s)(0.999−0.0334i)Λ(2−s)
Λ(s)=(=(882s/2ΓC(s+1/2)L(s)(0.999−0.0334i)Λ(1−s)
Degree: |
2 |
Conductor: |
882
= 2⋅32⋅72
|
Sign: |
0.999−0.0334i
|
Analytic conductor: |
7.04280 |
Root analytic conductor: |
2.65382 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ882(295,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 882, ( :1/2), 0.999−0.0334i)
|
Particular Values
L(1) |
≈ |
1.64054+0.0274690i |
L(21) |
≈ |
1.64054+0.0274690i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+(0.619+1.61i)T |
| 7 | 1 |
good | 5 | 1+(−1.59−2.75i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1.59−2.75i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−2.85−4.93i)T+(−6.5+11.2i)T2 |
| 17 | 1−1.52T+17T2 |
| 19 | 1−1.28T+19T2 |
| 23 | 1+(1.11+1.93i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.54−6.13i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−4.71−8.15i)T+(−15.5+26.8i)T2 |
| 37 | 1+T+37T2 |
| 41 | 1+(2.80+4.85i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−3.41+5.91i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−2.91+5.04i)T+(−23.5−40.7i)T2 |
| 53 | 1+2.05T+53T2 |
| 59 | 1+(−0.562−0.974i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.56−2.70i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5.48+9.49i)T+(−33.5+58.0i)T2 |
| 71 | 1−8.69T+71T2 |
| 73 | 1−4.96T+73T2 |
| 79 | 1+(−2.06+3.58i)T+(−39.5−68.4i)T2 |
| 83 | 1+(4.03−6.98i)T+(−41.5−71.8i)T2 |
| 89 | 1+0.225T+89T2 |
| 97 | 1+(−7.42+12.8i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.58466747969075770155463034181, −9.493704905343100460333267478768, −8.513972313878062558754640963757, −7.16268394521650274742897968641, −6.76615867646802994682505534078, −5.87787895924820000099887063422, −4.92868627411304202468032820975, −3.48578198654754047254959318870, −2.37914616324586324900511781359, −1.60752441804350838460588554488,
0.76691125660843399200042336221, 2.96027653085674315588026649525, 4.04831195630895217181137727373, 5.02841739944039028659275330582, 5.80676516797965043836080470921, 6.01915913539053626085803436887, 7.917761781804951435000711570644, 8.346972004559955260556932598624, 9.372111570723994803297917025874, 9.893037140678974178999666177947