Properties

Label 2-88e2-1.1-c1-0-167
Degree $2$
Conductor $7744$
Sign $-1$
Analytic cond. $61.8361$
Root an. cond. $7.86359$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s − 2·7-s + 9-s − 13-s − 2·15-s + 3·17-s + 2·19-s − 4·21-s + 6·23-s − 4·25-s − 4·27-s − 29-s − 10·31-s + 2·35-s + 3·37-s − 2·39-s + 11·41-s + 12·43-s − 45-s − 10·47-s − 3·49-s + 6·51-s − 9·53-s + 4·57-s − 4·59-s − 6·61-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 0.277·13-s − 0.516·15-s + 0.727·17-s + 0.458·19-s − 0.872·21-s + 1.25·23-s − 4/5·25-s − 0.769·27-s − 0.185·29-s − 1.79·31-s + 0.338·35-s + 0.493·37-s − 0.320·39-s + 1.71·41-s + 1.82·43-s − 0.149·45-s − 1.45·47-s − 3/7·49-s + 0.840·51-s − 1.23·53-s + 0.529·57-s − 0.520·59-s − 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7744\)    =    \(2^{6} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(61.8361\)
Root analytic conductor: \(7.86359\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7744,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 - 3 T + p T^{2} \)
41 \( 1 - 11 T + p T^{2} \)
43 \( 1 - 12 T + p T^{2} \)
47 \( 1 + 10 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 2 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 + 14 T + p T^{2} \)
89 \( 1 + T + p T^{2} \)
97 \( 1 - 11 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.61869645446882851374244373040, −7.13722684857882761955418230717, −6.09883443748694790278655067701, −5.49723602499701992739932909308, −4.47529492296087060464394190980, −3.66145277623877784495614958625, −3.14977932924638931123583315141, −2.50787058620871950908582653928, −1.38783498676763346708638910718, 0, 1.38783498676763346708638910718, 2.50787058620871950908582653928, 3.14977932924638931123583315141, 3.66145277623877784495614958625, 4.47529492296087060464394190980, 5.49723602499701992739932909308, 6.09883443748694790278655067701, 7.13722684857882761955418230717, 7.61869645446882851374244373040

Graph of the $Z$-function along the critical line