Properties

Label 2-891-1.1-c1-0-20
Degree $2$
Conductor $891$
Sign $-1$
Analytic cond. $7.11467$
Root an. cond. $2.66733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 4-s − 5-s − 2·7-s + 3·8-s + 10-s − 11-s + 7·13-s + 2·14-s − 16-s − 17-s + 6·19-s + 20-s + 22-s − 8·23-s − 4·25-s − 7·26-s + 2·28-s − 3·29-s − 2·31-s − 5·32-s + 34-s + 2·35-s − 3·37-s − 6·38-s − 3·40-s − 10·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.447·5-s − 0.755·7-s + 1.06·8-s + 0.316·10-s − 0.301·11-s + 1.94·13-s + 0.534·14-s − 1/4·16-s − 0.242·17-s + 1.37·19-s + 0.223·20-s + 0.213·22-s − 1.66·23-s − 4/5·25-s − 1.37·26-s + 0.377·28-s − 0.557·29-s − 0.359·31-s − 0.883·32-s + 0.171·34-s + 0.338·35-s − 0.493·37-s − 0.973·38-s − 0.474·40-s − 1.56·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(891\)    =    \(3^{4} \cdot 11\)
Sign: $-1$
Analytic conductor: \(7.11467\)
Root analytic conductor: \(2.66733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 891,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
11 \( 1 + T \)
good2 \( 1 + T + p T^{2} \)
5 \( 1 + T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
13 \( 1 - 7 T + p T^{2} \)
17 \( 1 + T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 + 9 T + p T^{2} \)
67 \( 1 - 2 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + 4 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 15 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.688678298787394232032584366111, −8.841204386443289209009120453460, −8.158491432152574935865930788879, −7.42914874671437718782079244253, −6.27827312125011644540569752382, −5.39744005634419493992839888034, −4.02715200249010457921191571121, −3.43365430050361198222708919283, −1.53865115269998686381095233957, 0, 1.53865115269998686381095233957, 3.43365430050361198222708919283, 4.02715200249010457921191571121, 5.39744005634419493992839888034, 6.27827312125011644540569752382, 7.42914874671437718782079244253, 8.158491432152574935865930788879, 8.841204386443289209009120453460, 9.688678298787394232032584366111

Graph of the $Z$-function along the critical line