L(s) = 1 | + (0.537 − 0.390i)2-s + (−0.481 + 1.48i)4-s + (−0.903 − 0.656i)5-s + (−1.20 + 3.71i)7-s + (0.730 + 2.24i)8-s − 0.741·10-s + (−1.17 − 3.10i)11-s + (−2.16 + 1.57i)13-s + (0.801 + 2.46i)14-s + (−1.25 − 0.909i)16-s + (−4.48 − 3.26i)17-s + (−1.58 − 4.88i)19-s + (1.40 − 1.02i)20-s + (−1.84 − 1.20i)22-s + 2.11·23-s + ⋯ |
L(s) = 1 | + (0.380 − 0.276i)2-s + (−0.240 + 0.741i)4-s + (−0.403 − 0.293i)5-s + (−0.456 + 1.40i)7-s + (0.258 + 0.794i)8-s − 0.234·10-s + (−0.355 − 0.934i)11-s + (−0.600 + 0.436i)13-s + (0.214 + 0.659i)14-s + (−0.312 − 0.227i)16-s + (−1.08 − 0.790i)17-s + (−0.363 − 1.11i)19-s + (0.314 − 0.228i)20-s + (−0.393 − 0.257i)22-s + 0.440·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0252i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0252i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00313446 - 0.248491i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00313446 - 0.248491i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (1.17 + 3.10i)T \) |
good | 2 | \( 1 + (-0.537 + 0.390i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (0.903 + 0.656i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (1.20 - 3.71i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (2.16 - 1.57i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (4.48 + 3.26i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.58 + 4.88i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 2.11T + 23T^{2} \) |
| 29 | \( 1 + (-0.334 + 1.03i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-0.348 + 0.252i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.69 - 8.27i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (0.902 + 2.77i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 2.23T + 43T^{2} \) |
| 47 | \( 1 + (-3.96 - 12.2i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (4.56 - 3.31i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (0.734 - 2.25i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.30 - 2.40i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 9.75T + 67T^{2} \) |
| 71 | \( 1 + (5.11 + 3.71i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (3.60 - 11.1i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (3.65 - 2.65i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (0.389 + 0.283i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 16.0T + 89T^{2} \) |
| 97 | \( 1 + (6.48 - 4.71i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81674438032469175153339734650, −9.385035461703761197145522014911, −8.844619536392860011090775066152, −8.270658898310627675558199566861, −7.16429977433340249764266014758, −6.15598538229805280981916041099, −5.02543262283195631696436358317, −4.39213979010353410280182854374, −2.96181729076216591248220582151, −2.49944841795214544982682157315,
0.098975345366517127934781576575, 1.80777747624913365497027391451, 3.59460254458945808487480803691, 4.27951288744508518598733723685, 5.19740077419748683883275310594, 6.33600594442951836022897862489, 7.09850613312626439357945598662, 7.65902255220121062576356415579, 8.954919326748970610724281470052, 10.05498779233529035518455525552