L(s) = 1 | + (1.48 − 1.07i)2-s + (0.421 − 1.29i)4-s + (0.0729 + 0.0530i)5-s + (−1.45 + 4.48i)7-s + (0.360 + 1.11i)8-s + 0.165·10-s + (−3.00 − 1.39i)11-s + (−2.65 + 1.92i)13-s + (2.67 + 8.21i)14-s + (3.93 + 2.86i)16-s + (3.80 + 2.76i)17-s + (1.79 + 5.53i)19-s + (0.0995 − 0.0723i)20-s + (−5.96 + 1.16i)22-s − 2.20·23-s + ⋯ |
L(s) = 1 | + (1.04 − 0.762i)2-s + (0.210 − 0.648i)4-s + (0.0326 + 0.0237i)5-s + (−0.550 + 1.69i)7-s + (0.127 + 0.392i)8-s + 0.0523·10-s + (−0.906 − 0.421i)11-s + (−0.735 + 0.534i)13-s + (0.713 + 2.19i)14-s + (0.984 + 0.715i)16-s + (0.924 + 0.671i)17-s + (0.412 + 1.27i)19-s + (0.0222 − 0.0161i)20-s + (−1.27 + 0.248i)22-s − 0.458·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.698 - 0.715i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 891 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.698 - 0.715i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00257 + 0.843580i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00257 + 0.843580i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 11 | \( 1 + (3.00 + 1.39i)T \) |
good | 2 | \( 1 + (-1.48 + 1.07i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-0.0729 - 0.0530i)T + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (1.45 - 4.48i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (2.65 - 1.92i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-3.80 - 2.76i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.79 - 5.53i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 2.20T + 23T^{2} \) |
| 29 | \( 1 + (-1.57 + 4.85i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (-3.95 + 2.87i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (1.41 - 4.34i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-2.32 - 7.14i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 5.79T + 43T^{2} \) |
| 47 | \( 1 + (0.290 + 0.893i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-9.93 + 7.21i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.195 + 0.602i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-0.944 - 0.686i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 4.12T + 67T^{2} \) |
| 71 | \( 1 + (-6.15 - 4.47i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-3.24 + 9.98i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (7.27 - 5.28i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-11.4 - 8.33i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 2.58T + 89T^{2} \) |
| 97 | \( 1 + (-4.00 + 2.91i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12102116439718185163999036927, −9.820072462878761085733681494700, −8.337360247025792520191843321808, −8.039062794233897692036551266131, −6.26846737539008145249290779449, −5.70705637130474923475037826068, −4.93209784397747121603002043669, −3.71875131675853201981242488111, −2.77248711273341353606849046854, −2.06624439696551477434023977932,
0.72886308652330044803633918612, 2.94921119851478350248338868027, 3.83204835558636786204875861402, 4.90245408072371147017065330791, 5.38001688536976330923667487950, 6.70457356501171026564431877291, 7.33376017061547672281689872214, 7.68686340239109680975688756988, 9.338454352006755947392253180220, 10.19637202007502149669527355479