L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.0795 + 1.73i)3-s + (−0.866 + 0.499i)4-s + (0.661 + 2.13i)5-s + (1.69 − 0.370i)6-s + (3.75 − 1.00i)7-s + (0.707 + 0.707i)8-s + (−2.98 − 0.275i)9-s + (1.89 − 1.19i)10-s + (−3.44 − 1.98i)11-s + (−0.796 − 1.53i)12-s + (0.956 + 0.256i)13-s + (−1.94 − 3.36i)14-s + (−3.74 + 0.974i)15-s + (0.500 − 0.866i)16-s + (−0.120 + 0.120i)17-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (−0.0459 + 0.998i)3-s + (−0.433 + 0.249i)4-s + (0.295 + 0.955i)5-s + (0.690 − 0.151i)6-s + (1.41 − 0.380i)7-s + (0.249 + 0.249i)8-s + (−0.995 − 0.0917i)9-s + (0.598 − 0.376i)10-s + (−1.03 − 0.599i)11-s + (−0.229 − 0.444i)12-s + (0.265 + 0.0710i)13-s + (−0.519 − 0.899i)14-s + (−0.967 + 0.251i)15-s + (0.125 − 0.216i)16-s + (−0.0291 + 0.0291i)17-s + ⋯ |
Λ(s)=(=(90s/2ΓC(s)L(s)(0.947−0.319i)Λ(2−s)
Λ(s)=(=(90s/2ΓC(s+1/2)L(s)(0.947−0.319i)Λ(1−s)
Degree: |
2 |
Conductor: |
90
= 2⋅32⋅5
|
Sign: |
0.947−0.319i
|
Analytic conductor: |
0.718653 |
Root analytic conductor: |
0.847734 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ90(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 90, ( :1/2), 0.947−0.319i)
|
Particular Values
L(1) |
≈ |
0.920564+0.151262i |
L(21) |
≈ |
0.920564+0.151262i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258+0.965i)T |
| 3 | 1+(0.0795−1.73i)T |
| 5 | 1+(−0.661−2.13i)T |
good | 7 | 1+(−3.75+1.00i)T+(6.06−3.5i)T2 |
| 11 | 1+(3.44+1.98i)T+(5.5+9.52i)T2 |
| 13 | 1+(−0.956−0.256i)T+(11.2+6.5i)T2 |
| 17 | 1+(0.120−0.120i)T−17iT2 |
| 19 | 1+1.88iT−19T2 |
| 23 | 1+(−1.36+5.08i)T+(−19.9−11.5i)T2 |
| 29 | 1+(2.15−3.73i)T+(−14.5−25.1i)T2 |
| 31 | 1+(4.70+8.14i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−3.26−3.26i)T+37iT2 |
| 41 | 1+(−7.15+4.13i)T+(20.5−35.5i)T2 |
| 43 | 1+(−0.533−1.99i)T+(−37.2+21.5i)T2 |
| 47 | 1+(−0.897−3.34i)T+(−40.7+23.5i)T2 |
| 53 | 1+(3.66+3.66i)T+53iT2 |
| 59 | 1+(−2.72−4.72i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.35−7.54i)T+(−30.5−52.8i)T2 |
| 67 | 1+(2.10−7.86i)T+(−58.0−33.5i)T2 |
| 71 | 1−6.94iT−71T2 |
| 73 | 1+(8.27−8.27i)T−73iT2 |
| 79 | 1+(11.7+6.78i)T+(39.5+68.4i)T2 |
| 83 | 1+(−6.75+1.81i)T+(71.8−41.5i)T2 |
| 89 | 1−4.87T+89T2 |
| 97 | 1+(−1.44+0.387i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.32963689902960724985949060259, −13.23648543805560862225761915740, −11.35702795268597906285999251280, −10.98384114021111656623357494192, −10.19388475575991369234523285945, −8.825428167125322110728291815423, −7.67291254090949274413504052014, −5.62503445204123225441378922322, −4.28407584483394434470350031662, −2.68100260688780801836488358418,
1.73428787292598141776655761801, 4.94451411667770672973877522933, 5.76611260963748113229591339883, 7.54672279069282917293181562776, 8.159730414949622211855171825428, 9.241691220189246874914387106744, 10.95588842666517222264581336446, 12.19657517282070384268762320802, 13.08588362641917830736271997575, 14.02715428475129943885560188053