L(s) = 1 | + (−0.258 − 0.965i)2-s + (−0.0795 + 1.73i)3-s + (−0.866 + 0.499i)4-s + (0.661 + 2.13i)5-s + (1.69 − 0.370i)6-s + (3.75 − 1.00i)7-s + (0.707 + 0.707i)8-s + (−2.98 − 0.275i)9-s + (1.89 − 1.19i)10-s + (−3.44 − 1.98i)11-s + (−0.796 − 1.53i)12-s + (0.956 + 0.256i)13-s + (−1.94 − 3.36i)14-s + (−3.74 + 0.974i)15-s + (0.500 − 0.866i)16-s + (−0.120 + 0.120i)17-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (−0.0459 + 0.998i)3-s + (−0.433 + 0.249i)4-s + (0.295 + 0.955i)5-s + (0.690 − 0.151i)6-s + (1.41 − 0.380i)7-s + (0.249 + 0.249i)8-s + (−0.995 − 0.0917i)9-s + (0.598 − 0.376i)10-s + (−1.03 − 0.599i)11-s + (−0.229 − 0.444i)12-s + (0.265 + 0.0710i)13-s + (−0.519 − 0.899i)14-s + (−0.967 + 0.251i)15-s + (0.125 − 0.216i)16-s + (−0.0291 + 0.0291i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.947 - 0.319i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.947 - 0.319i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.920564 + 0.151262i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.920564 + 0.151262i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.258 + 0.965i)T \) |
| 3 | \( 1 + (0.0795 - 1.73i)T \) |
| 5 | \( 1 + (-0.661 - 2.13i)T \) |
good | 7 | \( 1 + (-3.75 + 1.00i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (3.44 + 1.98i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.956 - 0.256i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (0.120 - 0.120i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.88iT - 19T^{2} \) |
| 23 | \( 1 + (-1.36 + 5.08i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (2.15 - 3.73i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (4.70 + 8.14i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.26 - 3.26i)T + 37iT^{2} \) |
| 41 | \( 1 + (-7.15 + 4.13i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.533 - 1.99i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (-0.897 - 3.34i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (3.66 + 3.66i)T + 53iT^{2} \) |
| 59 | \( 1 + (-2.72 - 4.72i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.35 - 7.54i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.10 - 7.86i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 6.94iT - 71T^{2} \) |
| 73 | \( 1 + (8.27 - 8.27i)T - 73iT^{2} \) |
| 79 | \( 1 + (11.7 + 6.78i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.75 + 1.81i)T + (71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 - 4.87T + 89T^{2} \) |
| 97 | \( 1 + (-1.44 + 0.387i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.32963689902960724985949060259, −13.23648543805560862225761915740, −11.35702795268597906285999251280, −10.98384114021111656623357494192, −10.19388475575991369234523285945, −8.825428167125322110728291815423, −7.67291254090949274413504052014, −5.62503445204123225441378922322, −4.28407584483394434470350031662, −2.68100260688780801836488358418,
1.73428787292598141776655761801, 4.94451411667770672973877522933, 5.76611260963748113229591339883, 7.54672279069282917293181562776, 8.159730414949622211855171825428, 9.241691220189246874914387106744, 10.95588842666517222264581336446, 12.19657517282070384268762320802, 13.08588362641917830736271997575, 14.02715428475129943885560188053