L(s) = 1 | + (−0.258 − 0.965i)2-s + (1.62 − 0.599i)3-s + (−0.866 + 0.499i)4-s + (2.20 + 0.358i)5-s + (−1 − 1.41i)6-s + (−4.40 + 1.18i)7-s + (0.707 + 0.707i)8-s + (2.28 − 1.94i)9-s + (−0.224 − 2.22i)10-s + (−0.550 − 0.317i)11-s + (−1.10 + 1.33i)12-s + (−3.34 − 0.896i)13-s + (2.28 + 3.94i)14-s + (3.80 − 0.741i)15-s + (0.500 − 0.866i)16-s + (0.317 − 0.317i)17-s + ⋯ |
L(s) = 1 | + (−0.183 − 0.683i)2-s + (0.938 − 0.346i)3-s + (−0.433 + 0.249i)4-s + (0.987 + 0.160i)5-s + (−0.408 − 0.577i)6-s + (−1.66 + 0.446i)7-s + (0.249 + 0.249i)8-s + (0.760 − 0.649i)9-s + (−0.0710 − 0.703i)10-s + (−0.165 − 0.0958i)11-s + (−0.319 + 0.384i)12-s + (−0.928 − 0.248i)13-s + (0.609 + 1.05i)14-s + (0.981 − 0.191i)15-s + (0.125 − 0.216i)16-s + (0.0770 − 0.0770i)17-s + ⋯ |
Λ(s)=(=(90s/2ΓC(s)L(s)(0.615+0.787i)Λ(2−s)
Λ(s)=(=(90s/2ΓC(s+1/2)L(s)(0.615+0.787i)Λ(1−s)
Degree: |
2 |
Conductor: |
90
= 2⋅32⋅5
|
Sign: |
0.615+0.787i
|
Analytic conductor: |
0.718653 |
Root analytic conductor: |
0.847734 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ90(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 90, ( :1/2), 0.615+0.787i)
|
Particular Values
L(1) |
≈ |
1.00182−0.488464i |
L(21) |
≈ |
1.00182−0.488464i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.258+0.965i)T |
| 3 | 1+(−1.62+0.599i)T |
| 5 | 1+(−2.20−0.358i)T |
good | 7 | 1+(4.40−1.18i)T+(6.06−3.5i)T2 |
| 11 | 1+(0.550+0.317i)T+(5.5+9.52i)T2 |
| 13 | 1+(3.34+0.896i)T+(11.2+6.5i)T2 |
| 17 | 1+(−0.317+0.317i)T−17iT2 |
| 19 | 1−6.44iT−19T2 |
| 23 | 1+(0.258−0.965i)T+(−19.9−11.5i)T2 |
| 29 | 1+(0.158−0.275i)T+(−14.5−25.1i)T2 |
| 31 | 1+(0.224+0.389i)T+(−15.5+26.8i)T2 |
| 37 | 1+(3+3i)T+37iT2 |
| 41 | 1+(−6.39+3.69i)T+(20.5−35.5i)T2 |
| 43 | 1+(0.896+3.34i)T+(−37.2+21.5i)T2 |
| 47 | 1+(2.32+8.69i)T+(−40.7+23.5i)T2 |
| 53 | 1+(−3.78−3.78i)T+53iT2 |
| 59 | 1+(4.48+7.77i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.275+0.476i)T+(−30.5−52.8i)T2 |
| 67 | 1+(1.71−6.38i)T+(−58.0−33.5i)T2 |
| 71 | 1−6.29iT−71T2 |
| 73 | 1+(6.89−6.89i)T−73iT2 |
| 79 | 1+(2.12+1.22i)T+(39.5+68.4i)T2 |
| 83 | 1+(−5.26+1.41i)T+(71.8−41.5i)T2 |
| 89 | 1+8.02T+89T2 |
| 97 | 1+(2.59−0.695i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.75390838752650612222274233985, −12.82975141676855669380480755959, −12.28544385574707569462784434033, −10.18899968214190585881307450664, −9.738465556796882741992324694516, −8.761182982633527232832837116383, −7.19338605129095804100231117999, −5.82559861955877040318123449483, −3.45443420619949451364967755639, −2.31256053256784956475585516413,
2.85018954803007261721190497747, 4.69661118540076006162861913531, 6.37784630758992714555097048811, 7.37512029690529663562849923539, 9.032593130855053680423076343793, 9.608040547364422430860932352312, 10.40793916549395773361012592721, 12.77800970167359361823309551339, 13.37567498932463299362309710398, 14.25340444945879559499823752920