L(s) = 1 | + (−0.965 − 0.258i)2-s + (−1.73 + 0.0795i)3-s + (0.866 + 0.499i)4-s + (−1.51 + 1.64i)5-s + (1.69 + 0.370i)6-s + (−1.00 + 3.75i)7-s + (−0.707 − 0.707i)8-s + (2.98 − 0.275i)9-s + (1.89 − 1.19i)10-s + (−3.44 + 1.98i)11-s + (−1.53 − 0.796i)12-s + (−0.256 − 0.956i)13-s + (1.94 − 3.36i)14-s + (2.49 − 2.95i)15-s + (0.500 + 0.866i)16-s + (0.120 − 0.120i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (−0.998 + 0.0459i)3-s + (0.433 + 0.249i)4-s + (−0.679 + 0.733i)5-s + (0.690 + 0.151i)6-s + (−0.380 + 1.41i)7-s + (−0.249 − 0.249i)8-s + (0.995 − 0.0917i)9-s + (0.598 − 0.376i)10-s + (−1.03 + 0.599i)11-s + (−0.444 − 0.229i)12-s + (−0.0710 − 0.265i)13-s + (0.519 − 0.899i)14-s + (0.644 − 0.764i)15-s + (0.125 + 0.216i)16-s + (0.0291 − 0.0291i)17-s + ⋯ |
Λ(s)=(=(90s/2ΓC(s)L(s)(−0.328−0.944i)Λ(2−s)
Λ(s)=(=(90s/2ΓC(s+1/2)L(s)(−0.328−0.944i)Λ(1−s)
Degree: |
2 |
Conductor: |
90
= 2⋅32⋅5
|
Sign: |
−0.328−0.944i
|
Analytic conductor: |
0.718653 |
Root analytic conductor: |
0.847734 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ90(77,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 90, ( :1/2), −0.328−0.944i)
|
Particular Values
L(1) |
≈ |
0.208610+0.293496i |
L(21) |
≈ |
0.208610+0.293496i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.965+0.258i)T |
| 3 | 1+(1.73−0.0795i)T |
| 5 | 1+(1.51−1.64i)T |
good | 7 | 1+(1.00−3.75i)T+(−6.06−3.5i)T2 |
| 11 | 1+(3.44−1.98i)T+(5.5−9.52i)T2 |
| 13 | 1+(0.256+0.956i)T+(−11.2+6.5i)T2 |
| 17 | 1+(−0.120+0.120i)T−17iT2 |
| 19 | 1+1.88iT−19T2 |
| 23 | 1+(−5.08+1.36i)T+(19.9−11.5i)T2 |
| 29 | 1+(−2.15−3.73i)T+(−14.5+25.1i)T2 |
| 31 | 1+(4.70−8.14i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−3.26−3.26i)T+37iT2 |
| 41 | 1+(−7.15−4.13i)T+(20.5+35.5i)T2 |
| 43 | 1+(1.99+0.533i)T+(37.2+21.5i)T2 |
| 47 | 1+(−3.34−0.897i)T+(40.7+23.5i)T2 |
| 53 | 1+(−3.66−3.66i)T+53iT2 |
| 59 | 1+(2.72−4.72i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.35+7.54i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−7.86+2.10i)T+(58.0−33.5i)T2 |
| 71 | 1+6.94iT−71T2 |
| 73 | 1+(8.27−8.27i)T−73iT2 |
| 79 | 1+(−11.7+6.78i)T+(39.5−68.4i)T2 |
| 83 | 1+(−1.81+6.75i)T+(−71.8−41.5i)T2 |
| 89 | 1+4.87T+89T2 |
| 97 | 1+(0.387−1.44i)T+(−84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.96472441509450193790184907452, −12.79309291304006973236648691738, −12.18560624158737866481894388966, −11.10360773691629744994584167634, −10.34058356079336317102549784173, −9.049382547311596331398043764727, −7.59382230381229383766826271875, −6.50721842454296087605454564206, −5.09261905803672684379667766706, −2.81925653112444433162049505195,
0.61006501612829189267912984801, 4.11900219054840968756339190750, 5.61077309093021410393670229855, 7.13271460238210307692755659808, 7.921173575873059110492692729208, 9.536860956779032308503207368132, 10.66616038458908482950589325647, 11.34932792719517834616561593587, 12.68638118783345156022967675654, 13.51794754817995718839969461261