L(s) = 1 | + (−0.965 − 0.258i)2-s + (−1.73 + 0.0795i)3-s + (0.866 + 0.499i)4-s + (−1.51 + 1.64i)5-s + (1.69 + 0.370i)6-s + (−1.00 + 3.75i)7-s + (−0.707 − 0.707i)8-s + (2.98 − 0.275i)9-s + (1.89 − 1.19i)10-s + (−3.44 + 1.98i)11-s + (−1.53 − 0.796i)12-s + (−0.256 − 0.956i)13-s + (1.94 − 3.36i)14-s + (2.49 − 2.95i)15-s + (0.500 + 0.866i)16-s + (0.120 − 0.120i)17-s + ⋯ |
L(s) = 1 | + (−0.683 − 0.183i)2-s + (−0.998 + 0.0459i)3-s + (0.433 + 0.249i)4-s + (−0.679 + 0.733i)5-s + (0.690 + 0.151i)6-s + (−0.380 + 1.41i)7-s + (−0.249 − 0.249i)8-s + (0.995 − 0.0917i)9-s + (0.598 − 0.376i)10-s + (−1.03 + 0.599i)11-s + (−0.444 − 0.229i)12-s + (−0.0710 − 0.265i)13-s + (0.519 − 0.899i)14-s + (0.644 − 0.764i)15-s + (0.125 + 0.216i)16-s + (0.0291 − 0.0291i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.328 - 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.328 - 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.208610 + 0.293496i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.208610 + 0.293496i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 3 | \( 1 + (1.73 - 0.0795i)T \) |
| 5 | \( 1 + (1.51 - 1.64i)T \) |
good | 7 | \( 1 + (1.00 - 3.75i)T + (-6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (3.44 - 1.98i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.256 + 0.956i)T + (-11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + (-0.120 + 0.120i)T - 17iT^{2} \) |
| 19 | \( 1 + 1.88iT - 19T^{2} \) |
| 23 | \( 1 + (-5.08 + 1.36i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-2.15 - 3.73i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.70 - 8.14i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.26 - 3.26i)T + 37iT^{2} \) |
| 41 | \( 1 + (-7.15 - 4.13i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.99 + 0.533i)T + (37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (-3.34 - 0.897i)T + (40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-3.66 - 3.66i)T + 53iT^{2} \) |
| 59 | \( 1 + (2.72 - 4.72i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.35 + 7.54i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.86 + 2.10i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 6.94iT - 71T^{2} \) |
| 73 | \( 1 + (8.27 - 8.27i)T - 73iT^{2} \) |
| 79 | \( 1 + (-11.7 + 6.78i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.81 + 6.75i)T + (-71.8 - 41.5i)T^{2} \) |
| 89 | \( 1 + 4.87T + 89T^{2} \) |
| 97 | \( 1 + (0.387 - 1.44i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.96472441509450193790184907452, −12.79309291304006973236648691738, −12.18560624158737866481894388966, −11.10360773691629744994584167634, −10.34058356079336317102549784173, −9.049382547311596331398043764727, −7.59382230381229383766826271875, −6.50721842454296087605454564206, −5.09261905803672684379667766706, −2.81925653112444433162049505195,
0.61006501612829189267912984801, 4.11900219054840968756339190750, 5.61077309093021410393670229855, 7.13271460238210307692755659808, 7.921173575873059110492692729208, 9.536860956779032308503207368132, 10.66616038458908482950589325647, 11.34932792719517834616561593587, 12.68638118783345156022967675654, 13.51794754817995718839969461261