L(s) = 1 | + (0.965 − 0.258i)2-s + (0.933 + 1.45i)3-s + (0.866 − 0.499i)4-s + (−2.22 + 0.210i)5-s + (1.27 + 1.16i)6-s + (−0.521 − 1.94i)7-s + (0.707 − 0.707i)8-s + (−1.25 + 2.72i)9-s + (−2.09 + 0.779i)10-s + (−1.70 − 0.984i)11-s + (1.53 + 0.796i)12-s + (1.05 − 3.92i)13-s + (−1.00 − 1.74i)14-s + (−2.38 − 3.05i)15-s + (0.500 − 0.866i)16-s + (2.35 + 2.35i)17-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (0.539 + 0.842i)3-s + (0.433 − 0.249i)4-s + (−0.995 + 0.0942i)5-s + (0.522 + 0.476i)6-s + (−0.197 − 0.736i)7-s + (0.249 − 0.249i)8-s + (−0.418 + 0.908i)9-s + (−0.662 + 0.246i)10-s + (−0.514 − 0.296i)11-s + (0.444 + 0.229i)12-s + (0.291 − 1.08i)13-s + (−0.269 − 0.466i)14-s + (−0.616 − 0.787i)15-s + (0.125 − 0.216i)16-s + (0.572 + 0.572i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.241i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 - 0.241i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.36376 + 0.166895i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.36376 + 0.166895i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 3 | \( 1 + (-0.933 - 1.45i)T \) |
| 5 | \( 1 + (2.22 - 0.210i)T \) |
good | 7 | \( 1 + (0.521 + 1.94i)T + (-6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (1.70 + 0.984i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.05 + 3.92i)T + (-11.2 - 6.5i)T^{2} \) |
| 17 | \( 1 + (-2.35 - 2.35i)T + 17iT^{2} \) |
| 19 | \( 1 - 3.70iT - 19T^{2} \) |
| 23 | \( 1 + (6.05 + 1.62i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + (3.74 - 6.49i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.48 - 6.04i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.26 + 4.26i)T - 37iT^{2} \) |
| 41 | \( 1 + (-6.13 + 3.54i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (9.09 - 2.43i)T + (37.2 - 21.5i)T^{2} \) |
| 47 | \( 1 + (-7.49 + 2.00i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-7.03 + 7.03i)T - 53iT^{2} \) |
| 59 | \( 1 + (-1.34 - 2.33i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (4.37 - 7.57i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.18 + 2.19i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 5.68iT - 71T^{2} \) |
| 73 | \( 1 + (-1.14 - 1.14i)T + 73iT^{2} \) |
| 79 | \( 1 + (10.0 + 5.80i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.440 + 1.64i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + 2.04T + 89T^{2} \) |
| 97 | \( 1 + (-2.60 - 9.71i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.31298212003126384897969386363, −13.19856269370687314248402722393, −12.11088207473277873107977593277, −10.66859833482839975679205238925, −10.31432511492175483454994881310, −8.427541330882447641857029951900, −7.52274720129954352861200684514, −5.60027414188458140727662036094, −4.09583677000796742339092850936, −3.24414664008117669448514210312,
2.59758594820897388503820025075, 4.19993852546629065683394378293, 5.99345562269768015513279761027, 7.28033951315223620773979660609, 8.162315258809296139594649527987, 9.430361765285760861297004396465, 11.55984880446351189933468688980, 11.96834174409633152322071004812, 13.09559632320528467789870257467, 13.96027856464549760364042502919