L(s) = 1 | + (0.965 − 0.258i)2-s + (0.933 + 1.45i)3-s + (0.866 − 0.499i)4-s + (−2.22 + 0.210i)5-s + (1.27 + 1.16i)6-s + (−0.521 − 1.94i)7-s + (0.707 − 0.707i)8-s + (−1.25 + 2.72i)9-s + (−2.09 + 0.779i)10-s + (−1.70 − 0.984i)11-s + (1.53 + 0.796i)12-s + (1.05 − 3.92i)13-s + (−1.00 − 1.74i)14-s + (−2.38 − 3.05i)15-s + (0.500 − 0.866i)16-s + (2.35 + 2.35i)17-s + ⋯ |
L(s) = 1 | + (0.683 − 0.183i)2-s + (0.539 + 0.842i)3-s + (0.433 − 0.249i)4-s + (−0.995 + 0.0942i)5-s + (0.522 + 0.476i)6-s + (−0.197 − 0.736i)7-s + (0.249 − 0.249i)8-s + (−0.418 + 0.908i)9-s + (−0.662 + 0.246i)10-s + (−0.514 − 0.296i)11-s + (0.444 + 0.229i)12-s + (0.291 − 1.08i)13-s + (−0.269 − 0.466i)14-s + (−0.616 − 0.787i)15-s + (0.125 − 0.216i)16-s + (0.572 + 0.572i)17-s + ⋯ |
Λ(s)=(=(90s/2ΓC(s)L(s)(0.970−0.241i)Λ(2−s)
Λ(s)=(=(90s/2ΓC(s+1/2)L(s)(0.970−0.241i)Λ(1−s)
Degree: |
2 |
Conductor: |
90
= 2⋅32⋅5
|
Sign: |
0.970−0.241i
|
Analytic conductor: |
0.718653 |
Root analytic conductor: |
0.847734 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ90(83,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 90, ( :1/2), 0.970−0.241i)
|
Particular Values
L(1) |
≈ |
1.36376+0.166895i |
L(21) |
≈ |
1.36376+0.166895i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.965+0.258i)T |
| 3 | 1+(−0.933−1.45i)T |
| 5 | 1+(2.22−0.210i)T |
good | 7 | 1+(0.521+1.94i)T+(−6.06+3.5i)T2 |
| 11 | 1+(1.70+0.984i)T+(5.5+9.52i)T2 |
| 13 | 1+(−1.05+3.92i)T+(−11.2−6.5i)T2 |
| 17 | 1+(−2.35−2.35i)T+17iT2 |
| 19 | 1−3.70iT−19T2 |
| 23 | 1+(6.05+1.62i)T+(19.9+11.5i)T2 |
| 29 | 1+(3.74−6.49i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−3.48−6.04i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−4.26+4.26i)T−37iT2 |
| 41 | 1+(−6.13+3.54i)T+(20.5−35.5i)T2 |
| 43 | 1+(9.09−2.43i)T+(37.2−21.5i)T2 |
| 47 | 1+(−7.49+2.00i)T+(40.7−23.5i)T2 |
| 53 | 1+(−7.03+7.03i)T−53iT2 |
| 59 | 1+(−1.34−2.33i)T+(−29.5+51.0i)T2 |
| 61 | 1+(4.37−7.57i)T+(−30.5−52.8i)T2 |
| 67 | 1+(8.18+2.19i)T+(58.0+33.5i)T2 |
| 71 | 1+5.68iT−71T2 |
| 73 | 1+(−1.14−1.14i)T+73iT2 |
| 79 | 1+(10.0+5.80i)T+(39.5+68.4i)T2 |
| 83 | 1+(0.440+1.64i)T+(−71.8+41.5i)T2 |
| 89 | 1+2.04T+89T2 |
| 97 | 1+(−2.60−9.71i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.31298212003126384897969386363, −13.19856269370687314248402722393, −12.11088207473277873107977593277, −10.66859833482839975679205238925, −10.31432511492175483454994881310, −8.427541330882447641857029951900, −7.52274720129954352861200684514, −5.60027414188458140727662036094, −4.09583677000796742339092850936, −3.24414664008117669448514210312,
2.59758594820897388503820025075, 4.19993852546629065683394378293, 5.99345562269768015513279761027, 7.28033951315223620773979660609, 8.162315258809296139594649527987, 9.430361765285760861297004396465, 11.55984880446351189933468688980, 11.96834174409633152322071004812, 13.09559632320528467789870257467, 13.96027856464549760364042502919