L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.866 + 1.5i)3-s + (0.499 − 0.866i)4-s + (2.23 + 0.133i)5-s + 1.73i·6-s + (−0.866 + 0.5i)7-s − 0.999i·8-s + (−1.5 − 2.59i)9-s + (1.99 − i)10-s + (1 + 1.73i)11-s + (0.866 + 1.49i)12-s + (−5.19 − 3i)13-s + (−0.499 + 0.866i)14-s + (−2.13 + 3.23i)15-s + (−0.5 − 0.866i)16-s − 2i·17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.499 + 0.866i)3-s + (0.249 − 0.433i)4-s + (0.998 + 0.0599i)5-s + 0.707i·6-s + (−0.327 + 0.188i)7-s − 0.353i·8-s + (−0.5 − 0.866i)9-s + (0.632 − 0.316i)10-s + (0.301 + 0.522i)11-s + (0.250 + 0.433i)12-s + (−1.44 − 0.832i)13-s + (−0.133 + 0.231i)14-s + (−0.550 + 0.834i)15-s + (−0.125 − 0.216i)16-s − 0.485i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.114i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.114i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22505 + 0.0702613i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22505 + 0.0702613i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (0.866 - 1.5i)T \) |
| 5 | \( 1 + (-2.23 - 0.133i)T \) |
good | 7 | \( 1 + (0.866 - 0.5i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 - 1.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (5.19 + 3i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 2iT - 17T^{2} \) |
| 19 | \( 1 + 6T + 19T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.5 - 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2iT - 37T^{2} \) |
| 41 | \( 1 + (-5.5 + 9.52i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.46 + 2i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (6.06 - 3.5i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 - 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.52 - 5.5i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - 4iT - 73T^{2} \) |
| 79 | \( 1 + (6 + 10.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-9.52 + 5.5i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + T + 89T^{2} \) |
| 97 | \( 1 + (6.92 - 4i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.35544749301079013769529954766, −12.85295718903619488271351804739, −12.19062534326430898163797428721, −10.73168638131145457989544693944, −10.02758857383745713976956920938, −9.107794971338959898382363204612, −6.82043002097545461274690869636, −5.60810404130365919907561901899, −4.60762477961140238604786618984, −2.73906414150220695599472359919,
2.31534766162471871481446780922, 4.72530765235595003728604336779, 6.14906564400756608464136136607, 6.75993903544224902772219265772, 8.254375647433727327560887201038, 9.779747887727566840538168300942, 11.13066402154609963959697028987, 12.32381791215817728156578994821, 13.06284365441183633661331090682, 13.98216398320997143553975093400