L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.866 + 1.5i)3-s + (0.499 − 0.866i)4-s + (2.23 + 0.133i)5-s + 1.73i·6-s + (−0.866 + 0.5i)7-s − 0.999i·8-s + (−1.5 − 2.59i)9-s + (1.99 − i)10-s + (1 + 1.73i)11-s + (0.866 + 1.49i)12-s + (−5.19 − 3i)13-s + (−0.499 + 0.866i)14-s + (−2.13 + 3.23i)15-s + (−0.5 − 0.866i)16-s − 2i·17-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (−0.499 + 0.866i)3-s + (0.249 − 0.433i)4-s + (0.998 + 0.0599i)5-s + 0.707i·6-s + (−0.327 + 0.188i)7-s − 0.353i·8-s + (−0.5 − 0.866i)9-s + (0.632 − 0.316i)10-s + (0.301 + 0.522i)11-s + (0.250 + 0.433i)12-s + (−1.44 − 0.832i)13-s + (−0.133 + 0.231i)14-s + (−0.550 + 0.834i)15-s + (−0.125 − 0.216i)16-s − 0.485i·17-s + ⋯ |
Λ(s)=(=(90s/2ΓC(s)L(s)(0.993−0.114i)Λ(2−s)
Λ(s)=(=(90s/2ΓC(s+1/2)L(s)(0.993−0.114i)Λ(1−s)
Degree: |
2 |
Conductor: |
90
= 2⋅32⋅5
|
Sign: |
0.993−0.114i
|
Analytic conductor: |
0.718653 |
Root analytic conductor: |
0.847734 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ90(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 90, ( :1/2), 0.993−0.114i)
|
Particular Values
L(1) |
≈ |
1.22505+0.0702613i |
L(21) |
≈ |
1.22505+0.0702613i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1+(0.866−1.5i)T |
| 5 | 1+(−2.23−0.133i)T |
good | 7 | 1+(0.866−0.5i)T+(3.5−6.06i)T2 |
| 11 | 1+(−1−1.73i)T+(−5.5+9.52i)T2 |
| 13 | 1+(5.19+3i)T+(6.5+11.2i)T2 |
| 17 | 1+2iT−17T2 |
| 19 | 1+6T+19T2 |
| 23 | 1+(−0.866−0.5i)T+(11.5+19.9i)T2 |
| 29 | 1+(−4.5−7.79i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1+1.73i)T+(−15.5−26.8i)T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1+(−5.5+9.52i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3.46+2i)T+(21.5−37.2i)T2 |
| 47 | 1+(6.06−3.5i)T+(23.5−40.7i)T2 |
| 53 | 1−53T2 |
| 59 | 1+(2−3.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.5−6.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−9.52−5.5i)T+(33.5+58.0i)T2 |
| 71 | 1+6T+71T2 |
| 73 | 1−4iT−73T2 |
| 79 | 1+(6+10.3i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−9.52+5.5i)T+(41.5−71.8i)T2 |
| 89 | 1+T+89T2 |
| 97 | 1+(6.92−4i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.35544749301079013769529954766, −12.85295718903619488271351804739, −12.19062534326430898163797428721, −10.73168638131145457989544693944, −10.02758857383745713976956920938, −9.107794971338959898382363204612, −6.82043002097545461274690869636, −5.60810404130365919907561901899, −4.60762477961140238604786618984, −2.73906414150220695599472359919,
2.31534766162471871481446780922, 4.72530765235595003728604336779, 6.14906564400756608464136136607, 6.75993903544224902772219265772, 8.254375647433727327560887201038, 9.779747887727566840538168300942, 11.13066402154609963959697028987, 12.32381791215817728156578994821, 13.06284365441183633661331090682, 13.98216398320997143553975093400