Properties

Label 2-90-45.4-c1-0-5
Degree 22
Conductor 9090
Sign 0.576+0.816i0.576 + 0.816i
Analytic cond. 0.7186530.718653
Root an. cond. 0.8477340.847734
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (0.158 − 1.72i)3-s + (0.499 − 0.866i)4-s + (−0.917 + 2.03i)5-s + (−0.724 − 1.57i)6-s + (0.389 − 0.224i)7-s − 0.999i·8-s + (−2.94 − 0.548i)9-s + (0.224 + 2.22i)10-s + (1.72 + 2.98i)11-s + (−1.41 − 0.999i)12-s + (−2.12 − 1.22i)13-s + (0.224 − 0.389i)14-s + (3.37 + 1.90i)15-s + (−0.5 − 0.866i)16-s + 5.89i·17-s + ⋯
L(s)  = 1  + (0.612 − 0.353i)2-s + (0.0917 − 0.995i)3-s + (0.249 − 0.433i)4-s + (−0.410 + 0.911i)5-s + (−0.295 − 0.642i)6-s + (0.147 − 0.0849i)7-s − 0.353i·8-s + (−0.983 − 0.182i)9-s + (0.0710 + 0.703i)10-s + (0.520 + 0.900i)11-s + (−0.408 − 0.288i)12-s + (−0.588 − 0.339i)13-s + (0.0600 − 0.104i)14-s + (0.870 + 0.492i)15-s + (−0.125 − 0.216i)16-s + 1.43i·17-s + ⋯

Functional equation

Λ(s)=(90s/2ΓC(s)L(s)=((0.576+0.816i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.576 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(90s/2ΓC(s+1/2)L(s)=((0.576+0.816i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 90 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.576 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 9090    =    23252 \cdot 3^{2} \cdot 5
Sign: 0.576+0.816i0.576 + 0.816i
Analytic conductor: 0.7186530.718653
Root analytic conductor: 0.8477340.847734
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ90(49,)\chi_{90} (49, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 90, ( :1/2), 0.576+0.816i)(2,\ 90,\ (\ :1/2),\ 0.576 + 0.816i)

Particular Values

L(1)L(1) \approx 1.129260.584859i1.12926 - 0.584859i
L(12)L(\frac12) \approx 1.129260.584859i1.12926 - 0.584859i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.866+0.5i)T 1 + (-0.866 + 0.5i)T
3 1+(0.158+1.72i)T 1 + (-0.158 + 1.72i)T
5 1+(0.9172.03i)T 1 + (0.917 - 2.03i)T
good7 1+(0.389+0.224i)T+(3.56.06i)T2 1 + (-0.389 + 0.224i)T + (3.5 - 6.06i)T^{2}
11 1+(1.722.98i)T+(5.5+9.52i)T2 1 + (-1.72 - 2.98i)T + (-5.5 + 9.52i)T^{2}
13 1+(2.12+1.22i)T+(6.5+11.2i)T2 1 + (2.12 + 1.22i)T + (6.5 + 11.2i)T^{2}
17 15.89iT17T2 1 - 5.89iT - 17T^{2}
19 15.44T+19T2 1 - 5.44T + 19T^{2}
23 1+(5.97+3.44i)T+(11.5+19.9i)T2 1 + (5.97 + 3.44i)T + (11.5 + 19.9i)T^{2}
29 1+(3+5.19i)T+(14.5+25.1i)T2 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2}
31 1+(0.7751.34i)T+(15.526.8i)T2 1 + (0.775 - 1.34i)T + (-15.5 - 26.8i)T^{2}
37 1+8iT37T2 1 + 8iT - 37T^{2}
41 1+(0.5+0.866i)T+(20.535.5i)T2 1 + (-0.5 + 0.866i)T + (-20.5 - 35.5i)T^{2}
43 1+(2.20+1.27i)T+(21.537.2i)T2 1 + (-2.20 + 1.27i)T + (21.5 - 37.2i)T^{2}
47 1+(3.85+2.22i)T+(23.540.7i)T2 1 + (-3.85 + 2.22i)T + (23.5 - 40.7i)T^{2}
53 13.55iT53T2 1 - 3.55iT - 53T^{2}
59 1+(6.62+11.4i)T+(29.551.0i)T2 1 + (-6.62 + 11.4i)T + (-29.5 - 51.0i)T^{2}
61 1+(2.22+3.85i)T+(30.5+52.8i)T2 1 + (2.22 + 3.85i)T + (-30.5 + 52.8i)T^{2}
67 1+(3.942.27i)T+(33.5+58.0i)T2 1 + (-3.94 - 2.27i)T + (33.5 + 58.0i)T^{2}
71 1+2.44T+71T2 1 + 2.44T + 71T^{2}
73 114.7iT73T2 1 - 14.7iT - 73T^{2}
79 1+(3.676.36i)T+(39.5+68.4i)T2 1 + (-3.67 - 6.36i)T + (-39.5 + 68.4i)T^{2}
83 1+(3.462i)T+(41.571.8i)T2 1 + (3.46 - 2i)T + (41.5 - 71.8i)T^{2}
89 1+3.10T+89T2 1 + 3.10T + 89T^{2}
97 1+(11.26.5i)T+(48.584.0i)T2 1 + (11.2 - 6.5i)T + (48.5 - 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−14.10785871550535578383461112336, −12.70388573077722447510903210273, −12.06436702077582165151651079696, −11.03608042251989246659065417683, −9.823977150577299661080253324953, −7.964055672745042024316698617247, −7.03359102898768566334571652894, −5.86777420491565887386810951752, −3.87973663604563963223802631918, −2.22143501198063388053769767323, 3.40143802318796413810831655341, 4.71292075716634527105090508002, 5.64602718897363475251973089842, 7.55237684885516684005224754985, 8.804359792607036955070896285410, 9.703768129417084126986628733584, 11.50656761677525870193740618190, 11.88379976874163163997560281822, 13.55270254406507274149979798149, 14.25386858388551989938739815372

Graph of the ZZ-function along the critical line