L(s) = 1 | + (−1 + i)2-s − 2i·4-s + (−3 − 4i)5-s + (8 − 8i)7-s + (2 + 2i)8-s + (7 + i)10-s + 4·11-s + (−3 − 3i)13-s + 16i·14-s − 4·16-s + (19 − 19i)17-s + 8i·19-s + (−8 + 6i)20-s + (−4 + 4i)22-s + (−20 − 20i)23-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s − 0.5i·4-s + (−0.600 − 0.800i)5-s + (1.14 − 1.14i)7-s + (0.250 + 0.250i)8-s + (0.700 + 0.100i)10-s + 0.363·11-s + (−0.230 − 0.230i)13-s + 1.14i·14-s − 0.250·16-s + (1.11 − 1.11i)17-s + 0.421i·19-s + (−0.400 + 0.300i)20-s + (−0.181 + 0.181i)22-s + (−0.869 − 0.869i)23-s + ⋯ |
Λ(s)=(=(90s/2ΓC(s)L(s)(0.767+0.640i)Λ(3−s)
Λ(s)=(=(90s/2ΓC(s+1)L(s)(0.767+0.640i)Λ(1−s)
Degree: |
2 |
Conductor: |
90
= 2⋅32⋅5
|
Sign: |
0.767+0.640i
|
Analytic conductor: |
2.45232 |
Root analytic conductor: |
1.56598 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ90(73,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 90, ( :1), 0.767+0.640i)
|
Particular Values
L(23) |
≈ |
0.929943−0.337071i |
L(21) |
≈ |
0.929943−0.337071i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1−i)T |
| 3 | 1 |
| 5 | 1+(3+4i)T |
good | 7 | 1+(−8+8i)T−49iT2 |
| 11 | 1−4T+121T2 |
| 13 | 1+(3+3i)T+169iT2 |
| 17 | 1+(−19+19i)T−289iT2 |
| 19 | 1−8iT−361T2 |
| 23 | 1+(20+20i)T+529iT2 |
| 29 | 1−38iT−841T2 |
| 31 | 1+44T+961T2 |
| 37 | 1+(3−3i)T−1.36e3iT2 |
| 41 | 1−70T+1.68e3T2 |
| 43 | 1+(−36−36i)T+1.84e3iT2 |
| 47 | 1−2.20e3iT2 |
| 53 | 1+(−17−17i)T+2.80e3iT2 |
| 59 | 1−92iT−3.48e3T2 |
| 61 | 1−72T+3.72e3T2 |
| 67 | 1+(−44+44i)T−4.48e3iT2 |
| 71 | 1+88T+5.04e3T2 |
| 73 | 1+(−55−55i)T+5.32e3iT2 |
| 79 | 1+12iT−6.24e3T2 |
| 83 | 1+(24+24i)T+6.88e3iT2 |
| 89 | 1+26iT−7.92e3T2 |
| 97 | 1+(57−57i)T−9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.15886357832638319280918651839, −12.62924959685238902986063294303, −11.49901903319005434993482542731, −10.44556285674008257262123730504, −9.138106399083541669950966414132, −7.923884175503687284138153359726, −7.32213427269648630663092833128, −5.35773864414447254213450436352, −4.17151599413298949152826555678, −1.04637085856452170468959364729,
2.13577502529342843796375824345, 3.89414961913487455801271052203, 5.77026034946687879387660380905, 7.52441484965829760354957143396, 8.362558544002381284914929252314, 9.639434373450386469354397017371, 10.96430840121788125065986836627, 11.67597479320255105685364595619, 12.47636677792100653882590862659, 14.23602651858445477500073167637