Properties

Label 2-90e2-1.1-c1-0-46
Degree $2$
Conductor $8100$
Sign $-1$
Analytic cond. $64.6788$
Root an. cond. $8.04231$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.10·7-s + 3.81·11-s − 5.81·13-s + 3.81·17-s − 1.81·19-s + 2.10·23-s + 7.20·29-s − 1.81·31-s + 6.01·37-s − 11.0·41-s − 5.81·43-s + 11.9·47-s + 9.81·49-s + 4.20·53-s + 4.20·59-s − 3.01·61-s − 3.71·67-s + 2.01·71-s − 8·73-s − 15.6·77-s + 2·79-s − 3.89·83-s + 3·89-s + 23.8·91-s − 12.2·97-s − 16.2·101-s + 9.45·103-s + ⋯
L(s)  = 1  − 1.54·7-s + 1.15·11-s − 1.61·13-s + 0.925·17-s − 0.416·19-s + 0.438·23-s + 1.33·29-s − 0.326·31-s + 0.989·37-s − 1.72·41-s − 0.887·43-s + 1.73·47-s + 1.40·49-s + 0.577·53-s + 0.547·59-s − 0.386·61-s − 0.453·67-s + 0.239·71-s − 0.936·73-s − 1.78·77-s + 0.225·79-s − 0.427·83-s + 0.317·89-s + 2.50·91-s − 1.23·97-s − 1.61·101-s + 0.931·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8100\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2}\)
Sign: $-1$
Analytic conductor: \(64.6788\)
Root analytic conductor: \(8.04231\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8100,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4.10T + 7T^{2} \)
11 \( 1 - 3.81T + 11T^{2} \)
13 \( 1 + 5.81T + 13T^{2} \)
17 \( 1 - 3.81T + 17T^{2} \)
19 \( 1 + 1.81T + 19T^{2} \)
23 \( 1 - 2.10T + 23T^{2} \)
29 \( 1 - 7.20T + 29T^{2} \)
31 \( 1 + 1.81T + 31T^{2} \)
37 \( 1 - 6.01T + 37T^{2} \)
41 \( 1 + 11.0T + 41T^{2} \)
43 \( 1 + 5.81T + 43T^{2} \)
47 \( 1 - 11.9T + 47T^{2} \)
53 \( 1 - 4.20T + 53T^{2} \)
59 \( 1 - 4.20T + 59T^{2} \)
61 \( 1 + 3.01T + 61T^{2} \)
67 \( 1 + 3.71T + 67T^{2} \)
71 \( 1 - 2.01T + 71T^{2} \)
73 \( 1 + 8T + 73T^{2} \)
79 \( 1 - 2T + 79T^{2} \)
83 \( 1 + 3.89T + 83T^{2} \)
89 \( 1 - 3T + 89T^{2} \)
97 \( 1 + 12.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.22184245804705983067996223427, −6.84946717801545310634119200445, −6.22666757390483467852388990636, −5.45625130159988626629665510714, −4.61465204024649365350355267534, −3.81725638967541072180267575591, −3.08311860826586007585117931781, −2.42503027850374647626570191902, −1.13348177734605703184278201709, 0, 1.13348177734605703184278201709, 2.42503027850374647626570191902, 3.08311860826586007585117931781, 3.81725638967541072180267575591, 4.61465204024649365350355267534, 5.45625130159988626629665510714, 6.22666757390483467852388990636, 6.84946717801545310634119200445, 7.22184245804705983067996223427

Graph of the $Z$-function along the critical line