L(s) = 1 | + 2.73·7-s + 1.73·11-s − 5.46·13-s + 4.73·17-s − 4.46·19-s − 3.46·23-s − 7.73·29-s + 5.92·31-s + 6.19·37-s − 11.1·41-s − 3.26·43-s + 1.26·47-s + 0.464·49-s + 7.26·53-s − 7.73·59-s − 4·61-s − 6.39·67-s − 11.1·71-s + 0.196·73-s + 4.73·77-s − 14.3·79-s + 15.1·83-s + 5.19·89-s − 14.9·91-s − 0.732·97-s + 6.12·101-s − 18.3·103-s + ⋯ |
L(s) = 1 | + 1.03·7-s + 0.522·11-s − 1.51·13-s + 1.14·17-s − 1.02·19-s − 0.722·23-s − 1.43·29-s + 1.06·31-s + 1.01·37-s − 1.74·41-s − 0.498·43-s + 0.184·47-s + 0.0663·49-s + 0.998·53-s − 1.00·59-s − 0.512·61-s − 0.780·67-s − 1.32·71-s + 0.0229·73-s + 0.539·77-s − 1.61·79-s + 1.66·83-s + 0.550·89-s − 1.56·91-s − 0.0743·97-s + 0.609·101-s − 1.81·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 2.73T + 7T^{2} \) |
| 11 | \( 1 - 1.73T + 11T^{2} \) |
| 13 | \( 1 + 5.46T + 13T^{2} \) |
| 17 | \( 1 - 4.73T + 17T^{2} \) |
| 19 | \( 1 + 4.46T + 19T^{2} \) |
| 23 | \( 1 + 3.46T + 23T^{2} \) |
| 29 | \( 1 + 7.73T + 29T^{2} \) |
| 31 | \( 1 - 5.92T + 31T^{2} \) |
| 37 | \( 1 - 6.19T + 37T^{2} \) |
| 41 | \( 1 + 11.1T + 41T^{2} \) |
| 43 | \( 1 + 3.26T + 43T^{2} \) |
| 47 | \( 1 - 1.26T + 47T^{2} \) |
| 53 | \( 1 - 7.26T + 53T^{2} \) |
| 59 | \( 1 + 7.73T + 59T^{2} \) |
| 61 | \( 1 + 4T + 61T^{2} \) |
| 67 | \( 1 + 6.39T + 67T^{2} \) |
| 71 | \( 1 + 11.1T + 71T^{2} \) |
| 73 | \( 1 - 0.196T + 73T^{2} \) |
| 79 | \( 1 + 14.3T + 79T^{2} \) |
| 83 | \( 1 - 15.1T + 83T^{2} \) |
| 89 | \( 1 - 5.19T + 89T^{2} \) |
| 97 | \( 1 + 0.732T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.64492934030562224390294336017, −6.86860471143552405135412391966, −6.05178237762916028303743155503, −5.32265686337292140703638484320, −4.65262536782745171118848489561, −4.06047142137456102857040186837, −3.04342752116821522881340923307, −2.11734918491584568021209460398, −1.40634830012377957720142661344, 0,
1.40634830012377957720142661344, 2.11734918491584568021209460398, 3.04342752116821522881340923307, 4.06047142137456102857040186837, 4.65262536782745171118848489561, 5.32265686337292140703638484320, 6.05178237762916028303743155503, 6.86860471143552405135412391966, 7.64492934030562224390294336017