L(s) = 1 | + 2.73·7-s + 1.73·11-s − 5.46·13-s + 4.73·17-s − 4.46·19-s − 3.46·23-s − 7.73·29-s + 5.92·31-s + 6.19·37-s − 11.1·41-s − 3.26·43-s + 1.26·47-s + 0.464·49-s + 7.26·53-s − 7.73·59-s − 4·61-s − 6.39·67-s − 11.1·71-s + 0.196·73-s + 4.73·77-s − 14.3·79-s + 15.1·83-s + 5.19·89-s − 14.9·91-s − 0.732·97-s + 6.12·101-s − 18.3·103-s + ⋯ |
L(s) = 1 | + 1.03·7-s + 0.522·11-s − 1.51·13-s + 1.14·17-s − 1.02·19-s − 0.722·23-s − 1.43·29-s + 1.06·31-s + 1.01·37-s − 1.74·41-s − 0.498·43-s + 0.184·47-s + 0.0663·49-s + 0.998·53-s − 1.00·59-s − 0.512·61-s − 0.780·67-s − 1.32·71-s + 0.0229·73-s + 0.539·77-s − 1.61·79-s + 1.66·83-s + 0.550·89-s − 1.56·91-s − 0.0743·97-s + 0.609·101-s − 1.81·103-s + ⋯ |
Λ(s)=(=(8100s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(8100s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−2.73T+7T2 |
| 11 | 1−1.73T+11T2 |
| 13 | 1+5.46T+13T2 |
| 17 | 1−4.73T+17T2 |
| 19 | 1+4.46T+19T2 |
| 23 | 1+3.46T+23T2 |
| 29 | 1+7.73T+29T2 |
| 31 | 1−5.92T+31T2 |
| 37 | 1−6.19T+37T2 |
| 41 | 1+11.1T+41T2 |
| 43 | 1+3.26T+43T2 |
| 47 | 1−1.26T+47T2 |
| 53 | 1−7.26T+53T2 |
| 59 | 1+7.73T+59T2 |
| 61 | 1+4T+61T2 |
| 67 | 1+6.39T+67T2 |
| 71 | 1+11.1T+71T2 |
| 73 | 1−0.196T+73T2 |
| 79 | 1+14.3T+79T2 |
| 83 | 1−15.1T+83T2 |
| 89 | 1−5.19T+89T2 |
| 97 | 1+0.732T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.64492934030562224390294336017, −6.86860471143552405135412391966, −6.05178237762916028303743155503, −5.32265686337292140703638484320, −4.65262536782745171118848489561, −4.06047142137456102857040186837, −3.04342752116821522881340923307, −2.11734918491584568021209460398, −1.40634830012377957720142661344, 0,
1.40634830012377957720142661344, 2.11734918491584568021209460398, 3.04342752116821522881340923307, 4.06047142137456102857040186837, 4.65262536782745171118848489561, 5.32265686337292140703638484320, 6.05178237762916028303743155503, 6.86860471143552405135412391966, 7.64492934030562224390294336017