L(s) = 1 | − 1.81·2-s − 3.10·3-s + 1.28·4-s + 2.81·5-s + 5.62·6-s − 7-s + 1.28·8-s + 6.62·9-s − 5.10·10-s + 3.10·11-s − 3.99·12-s + 13-s + 1.81·14-s − 8.72·15-s − 4.91·16-s − 0.524·17-s − 12.0·18-s + 0.813·19-s + 3.62·20-s + 3.10·21-s − 5.62·22-s + 7.33·23-s − 4.00·24-s + 2.91·25-s − 1.81·26-s − 11.2·27-s − 1.28·28-s + ⋯ |
L(s) = 1 | − 1.28·2-s − 1.79·3-s + 0.644·4-s + 1.25·5-s + 2.29·6-s − 0.377·7-s + 0.455·8-s + 2.20·9-s − 1.61·10-s + 0.935·11-s − 1.15·12-s + 0.277·13-s + 0.484·14-s − 2.25·15-s − 1.22·16-s − 0.127·17-s − 2.83·18-s + 0.186·19-s + 0.811·20-s + 0.677·21-s − 1.19·22-s + 1.53·23-s − 0.816·24-s + 0.583·25-s − 0.355·26-s − 2.16·27-s − 0.243·28-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.3881012228 |
L(21) |
≈ |
0.3881012228 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+T |
| 13 | 1−T |
good | 2 | 1+1.81T+2T2 |
| 3 | 1+3.10T+3T2 |
| 5 | 1−2.81T+5T2 |
| 11 | 1−3.10T+11T2 |
| 17 | 1+0.524T+17T2 |
| 19 | 1−0.813T+19T2 |
| 23 | 1−7.33T+23T2 |
| 29 | 1−8.28T+29T2 |
| 31 | 1−1.39T+31T2 |
| 37 | 1+6.15T+37T2 |
| 41 | 1+4.20T+41T2 |
| 43 | 1−6.75T+43T2 |
| 47 | 1+5.97T+47T2 |
| 53 | 1+2.49T+53T2 |
| 59 | 1+4.47T+59T2 |
| 61 | 1+2T+61T2 |
| 67 | 1−10.0T+67T2 |
| 71 | 1+8.72T+71T2 |
| 73 | 1+2.34T+73T2 |
| 79 | 1+13.5T+79T2 |
| 83 | 1−16.4T+83T2 |
| 89 | 1+10.6T+89T2 |
| 97 | 1+1.18T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.88777830242513739692539289281, −12.80973583034402151499416733291, −11.59086863743711495577045499367, −10.60099224119543009400133905705, −9.895812578457702131950705188115, −8.948365161903600243579050520670, −6.96372729183181824285675067939, −6.22024670683491927018005029540, −4.88149030753689217866982759788, −1.24925895028719379559500876429,
1.24925895028719379559500876429, 4.88149030753689217866982759788, 6.22024670683491927018005029540, 6.96372729183181824285675067939, 8.948365161903600243579050520670, 9.895812578457702131950705188115, 10.60099224119543009400133905705, 11.59086863743711495577045499367, 12.80973583034402151499416733291, 13.88777830242513739692539289281