L(s) = 1 | − 1.41·2-s + 1.41·3-s + 1.58·5-s − 2.00·6-s + 7-s + 2.82·8-s − 0.999·9-s − 2.24·10-s + 4.24·11-s − 13-s − 1.41·14-s + 2.24·15-s − 4.00·16-s + 1.41·17-s + 1.41·18-s − 7.24·19-s + 1.41·21-s − 6·22-s − 5.82·23-s + 4·24-s − 2.48·25-s + 1.41·26-s − 5.65·27-s + 0.171·29-s − 3.17·30-s + ⋯ |
L(s) = 1 | − 1.00·2-s + 0.816·3-s + 0.709·5-s − 0.816·6-s + 0.377·7-s + 0.999·8-s − 0.333·9-s − 0.709·10-s + 1.27·11-s − 0.277·13-s − 0.377·14-s + 0.579·15-s − 1.00·16-s + 0.342·17-s + 0.333·18-s − 1.66·19-s + 0.308·21-s − 1.27·22-s − 1.21·23-s + 0.816·24-s − 0.497·25-s + 0.277·26-s − 1.08·27-s + 0.0318·29-s − 0.579·30-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.8035041043 |
L(21) |
≈ |
0.8035041043 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1−T |
| 13 | 1+T |
good | 2 | 1+1.41T+2T2 |
| 3 | 1−1.41T+3T2 |
| 5 | 1−1.58T+5T2 |
| 11 | 1−4.24T+11T2 |
| 17 | 1−1.41T+17T2 |
| 19 | 1+7.24T+19T2 |
| 23 | 1+5.82T+23T2 |
| 29 | 1−0.171T+29T2 |
| 31 | 1−3.24T+31T2 |
| 37 | 1−2.24T+37T2 |
| 41 | 1−8.82T+41T2 |
| 43 | 1+5T+43T2 |
| 47 | 1−1.58T+47T2 |
| 53 | 1+0.171T+53T2 |
| 59 | 1−0.343T+59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1+14.4T+67T2 |
| 71 | 1+13.0T+71T2 |
| 73 | 1+9.24T+73T2 |
| 79 | 1−15.4T+79T2 |
| 83 | 1−13.2T+83T2 |
| 89 | 1−1.58T+89T2 |
| 97 | 1−11.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.19259351354014001633935862578, −13.32961004431274155578181993754, −11.81034674227379139892165090587, −10.43811267915924677562981769248, −9.453975216742547325282993143478, −8.710892224506815951873187739116, −7.78956849606875471561960327198, −6.15614991745813169223168872051, −4.20245225198679567841491642802, −1.98957828776268363334345914285,
1.98957828776268363334345914285, 4.20245225198679567841491642802, 6.15614991745813169223168872051, 7.78956849606875471561960327198, 8.710892224506815951873187739116, 9.453975216742547325282993143478, 10.43811267915924677562981769248, 11.81034674227379139892165090587, 13.32961004431274155578181993754, 14.19259351354014001633935862578