L(s) = 1 | + 1.41·2-s − 1.41·3-s + 4.41·5-s − 2.00·6-s + 7-s − 2.82·8-s − 0.999·9-s + 6.24·10-s − 4.24·11-s − 13-s + 1.41·14-s − 6.24·15-s − 4.00·16-s − 1.41·17-s − 1.41·18-s + 1.24·19-s − 1.41·21-s − 6·22-s − 0.171·23-s + 4·24-s + 14.4·25-s − 1.41·26-s + 5.65·27-s + 5.82·29-s − 8.82·30-s + ⋯ |
L(s) = 1 | + 1.00·2-s − 0.816·3-s + 1.97·5-s − 0.816·6-s + 0.377·7-s − 0.999·8-s − 0.333·9-s + 1.97·10-s − 1.27·11-s − 0.277·13-s + 0.377·14-s − 1.61·15-s − 1.00·16-s − 0.342·17-s − 0.333·18-s + 0.285·19-s − 0.308·21-s − 1.27·22-s − 0.0357·23-s + 0.816·24-s + 2.89·25-s − 0.277·26-s + 1.08·27-s + 1.08·29-s − 1.61·30-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.335659892 |
L(21) |
≈ |
1.335659892 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1−T |
| 13 | 1+T |
good | 2 | 1−1.41T+2T2 |
| 3 | 1+1.41T+3T2 |
| 5 | 1−4.41T+5T2 |
| 11 | 1+4.24T+11T2 |
| 17 | 1+1.41T+17T2 |
| 19 | 1−1.24T+19T2 |
| 23 | 1+0.171T+23T2 |
| 29 | 1−5.82T+29T2 |
| 31 | 1+5.24T+31T2 |
| 37 | 1+6.24T+37T2 |
| 41 | 1−3.17T+41T2 |
| 43 | 1+5T+43T2 |
| 47 | 1−4.41T+47T2 |
| 53 | 1+5.82T+53T2 |
| 59 | 1−11.6T+59T2 |
| 61 | 1−6T+61T2 |
| 67 | 1−2.48T+67T2 |
| 71 | 1−1.07T+71T2 |
| 73 | 1+0.757T+73T2 |
| 79 | 1+1.48T+79T2 |
| 83 | 1−4.75T+83T2 |
| 89 | 1−4.41T+89T2 |
| 97 | 1+13.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.91530704403553248137339920165, −13.18598525856379489294894562606, −12.31039705786425851174123193269, −10.92173925275991688173885509546, −9.956676790942336342764905946639, −8.720090509496169016660368964555, −6.55216153418865536823210553119, −5.46067764345373140398153217209, −5.09174108420603531238146202946, −2.59168801763164316544158957285,
2.59168801763164316544158957285, 5.09174108420603531238146202946, 5.46067764345373140398153217209, 6.55216153418865536823210553119, 8.720090509496169016660368964555, 9.956676790942336342764905946639, 10.92173925275991688173885509546, 12.31039705786425851174123193269, 13.18598525856379489294894562606, 13.91530704403553248137339920165