L(s) = 1 | + (−1.30 − 2.26i)2-s + (1.30 + 2.26i)3-s + (−2.42 + 4.20i)4-s + 2.61·5-s + (3.42 − 5.93i)6-s + (−0.5 + 0.866i)7-s + 7.47·8-s + (−1.92 + 3.33i)9-s + (−3.42 − 5.93i)10-s + (−0.927 − 1.60i)11-s − 12.7·12-s + (−2.5 − 2.59i)13-s + 2.61·14-s + (3.42 + 5.93i)15-s + (−4.92 − 8.53i)16-s + (0.736 − 1.27i)17-s + ⋯ |
L(s) = 1 | + (−0.925 − 1.60i)2-s + (0.755 + 1.30i)3-s + (−1.21 + 2.10i)4-s + 1.17·5-s + (1.39 − 2.42i)6-s + (−0.188 + 0.327i)7-s + 2.64·8-s + (−0.642 + 1.11i)9-s + (−1.08 − 1.87i)10-s + (−0.279 − 0.484i)11-s − 3.66·12-s + (−0.693 − 0.720i)13-s + 0.699·14-s + (0.884 + 1.53i)15-s + (−1.23 − 2.13i)16-s + (0.178 − 0.309i)17-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)(0.859+0.511i)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)(0.859+0.511i)Λ(1−s)
Degree: |
2 |
Conductor: |
91
= 7⋅13
|
Sign: |
0.859+0.511i
|
Analytic conductor: |
0.726638 |
Root analytic conductor: |
0.852431 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ91(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 91, ( :1/2), 0.859+0.511i)
|
Particular Values
L(1) |
≈ |
0.801490−0.220276i |
L(21) |
≈ |
0.801490−0.220276i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(0.5−0.866i)T |
| 13 | 1+(2.5+2.59i)T |
good | 2 | 1+(1.30+2.26i)T+(−1+1.73i)T2 |
| 3 | 1+(−1.30−2.26i)T+(−1.5+2.59i)T2 |
| 5 | 1−2.61T+5T2 |
| 11 | 1+(0.927+1.60i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−0.736+1.27i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.927+1.60i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.23−3.87i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3.54+6.14i)T+(−14.5+25.1i)T2 |
| 31 | 1+4.70T+31T2 |
| 37 | 1+(2+3.46i)T+(−18.5+32.0i)T2 |
| 41 | 1+(0.381+0.661i)T+(−20.5+35.5i)T2 |
| 43 | 1+(6.28−10.8i)T+(−21.5−37.2i)T2 |
| 47 | 1+2.23T+47T2 |
| 53 | 1−3.76T+53T2 |
| 59 | 1+(−1.11+1.93i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3+5.19i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−6.35−11.0i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−7.09+12.2i)T+(−35.5−61.4i)T2 |
| 73 | 1+2T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−6.70T+83T2 |
| 89 | 1+(2.45+4.25i)T+(−44.5+77.0i)T2 |
| 97 | 1+(9.42−16.3i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.69585316563607396005583691059, −12.88742228761098839182673088396, −11.41799207551908262378884258618, −10.40739824166229282417700423445, −9.607390863362311771317061218147, −9.265014826457146716128406306395, −8.006658353264053116592906854008, −5.21395122041646884883505643151, −3.47108356443198913441640188356, −2.42080627102110695534675623945,
1.80214490826245528977902820077, 5.36404778182236042436944321575, 6.70797965088300389274497248723, 7.20714144755062709813776420676, 8.402632954584516310066139809028, 9.348664020825086494977289568415, 10.27514006967594240862702061569, 12.61119931919059129964950553941, 13.60944668620195947049057451698, 14.27003126846218231628705924284