L(s) = 1 | + (−0.115 + 0.200i)2-s + (1.66 − 2.87i)3-s + (0.973 + 1.68i)4-s − 2.23·5-s + (0.384 + 0.665i)6-s + (0.5 + 0.866i)7-s − 0.913·8-s + (−4.01 − 6.96i)9-s + (0.258 − 0.447i)10-s + (−1.66 + 2.87i)11-s + 6.46·12-s + (3.40 + 1.19i)13-s − 0.231·14-s + (−3.70 + 6.41i)15-s + (−1.84 + 3.18i)16-s + (0.687 + 1.19i)17-s + ⋯ |
L(s) = 1 | + (−0.0817 + 0.141i)2-s + (0.959 − 1.66i)3-s + (0.486 + 0.842i)4-s − 0.997·5-s + (0.156 + 0.271i)6-s + (0.188 + 0.327i)7-s − 0.322·8-s + (−1.33 − 2.32i)9-s + (0.0816 − 0.141i)10-s + (−0.500 + 0.867i)11-s + 1.86·12-s + (0.943 + 0.330i)13-s − 0.0618·14-s + (−0.957 + 1.65i)15-s + (−0.460 + 0.797i)16-s + (0.166 + 0.288i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.822 + 0.568i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.822 + 0.568i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.09941 - 0.343098i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09941 - 0.343098i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-3.40 - 1.19i)T \) |
good | 2 | \( 1 + (0.115 - 0.200i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.66 + 2.87i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 2.23T + 5T^{2} \) |
| 11 | \( 1 + (1.66 - 2.87i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.687 - 1.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.61 + 2.80i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.419 - 0.726i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.303 + 0.525i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.71T + 31T^{2} \) |
| 37 | \( 1 + (0.776 - 1.34i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.58 + 7.94i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.615 + 1.06i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 1.62T + 47T^{2} \) |
| 53 | \( 1 - 8.39T + 53T^{2} \) |
| 59 | \( 1 + (4.41 + 7.64i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.73 + 4.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.09 + 8.82i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.60 - 4.51i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 3.96T + 73T^{2} \) |
| 79 | \( 1 - 6.45T + 79T^{2} \) |
| 83 | \( 1 + 4.64T + 83T^{2} \) |
| 89 | \( 1 + (4.56 - 7.90i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.67 - 13.3i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.78207974729377296298621016257, −12.78351063907466474921411146983, −12.17182714957777213462043583243, −11.29642291855801554575648955137, −8.915719136285082260029157961502, −8.095004957867821633147710496278, −7.43293287273454841364254687502, −6.46496255287246761462898355204, −3.67193402793460650513997232666, −2.23590199528254669182359196927,
3.06429129986526176513509224090, 4.25978974538480053534653495049, 5.68597288456527941638358916005, 7.86676651477109985167543999693, 8.741081848373144348222561625066, 10.03768831527980089678828627421, 10.78261554121269469031982695617, 11.48345058769687307890730478741, 13.58422793346959703032198834412, 14.51247349698249085364381465123