L(s) = 1 | + (−0.115 + 0.200i)2-s + (1.66 − 2.87i)3-s + (0.973 + 1.68i)4-s − 2.23·5-s + (0.384 + 0.665i)6-s + (0.5 + 0.866i)7-s − 0.913·8-s + (−4.01 − 6.96i)9-s + (0.258 − 0.447i)10-s + (−1.66 + 2.87i)11-s + 6.46·12-s + (3.40 + 1.19i)13-s − 0.231·14-s + (−3.70 + 6.41i)15-s + (−1.84 + 3.18i)16-s + (0.687 + 1.19i)17-s + ⋯ |
L(s) = 1 | + (−0.0817 + 0.141i)2-s + (0.959 − 1.66i)3-s + (0.486 + 0.842i)4-s − 0.997·5-s + (0.156 + 0.271i)6-s + (0.188 + 0.327i)7-s − 0.322·8-s + (−1.33 − 2.32i)9-s + (0.0816 − 0.141i)10-s + (−0.500 + 0.867i)11-s + 1.86·12-s + (0.943 + 0.330i)13-s − 0.0618·14-s + (−0.957 + 1.65i)15-s + (−0.460 + 0.797i)16-s + (0.166 + 0.288i)17-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)(0.822+0.568i)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)(0.822+0.568i)Λ(1−s)
Degree: |
2 |
Conductor: |
91
= 7⋅13
|
Sign: |
0.822+0.568i
|
Analytic conductor: |
0.726638 |
Root analytic conductor: |
0.852431 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ91(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 91, ( :1/2), 0.822+0.568i)
|
Particular Values
L(1) |
≈ |
1.09941−0.343098i |
L(21) |
≈ |
1.09941−0.343098i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−0.5−0.866i)T |
| 13 | 1+(−3.40−1.19i)T |
good | 2 | 1+(0.115−0.200i)T+(−1−1.73i)T2 |
| 3 | 1+(−1.66+2.87i)T+(−1.5−2.59i)T2 |
| 5 | 1+2.23T+5T2 |
| 11 | 1+(1.66−2.87i)T+(−5.5−9.52i)T2 |
| 17 | 1+(−0.687−1.19i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.61+2.80i)T+(−9.5+16.4i)T2 |
| 23 | 1+(0.419−0.726i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−0.303+0.525i)T+(−14.5−25.1i)T2 |
| 31 | 1−1.71T+31T2 |
| 37 | 1+(0.776−1.34i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−4.58+7.94i)T+(−20.5−35.5i)T2 |
| 43 | 1+(0.615+1.06i)T+(−21.5+37.2i)T2 |
| 47 | 1+1.62T+47T2 |
| 53 | 1−8.39T+53T2 |
| 59 | 1+(4.41+7.64i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.73+4.73i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.09+8.82i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−2.60−4.51i)T+(−35.5+61.4i)T2 |
| 73 | 1+3.96T+73T2 |
| 79 | 1−6.45T+79T2 |
| 83 | 1+4.64T+83T2 |
| 89 | 1+(4.56−7.90i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−7.67−13.3i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.78207974729377296298621016257, −12.78351063907466474921411146983, −12.17182714957777213462043583243, −11.29642291855801554575648955137, −8.915719136285082260029157961502, −8.095004957867821633147710496278, −7.43293287273454841364254687502, −6.46496255287246761462898355204, −3.67193402793460650513997232666, −2.23590199528254669182359196927,
3.06429129986526176513509224090, 4.25978974538480053534653495049, 5.68597288456527941638358916005, 7.86676651477109985167543999693, 8.741081848373144348222561625066, 10.03768831527980089678828627421, 10.78261554121269469031982695617, 11.48345058769687307890730478741, 13.58422793346959703032198834412, 14.51247349698249085364381465123