L(s) = 1 | + (8.46 − 14.6i)2-s + (17.8 − 30.9i)3-s + (−79.4 − 137. i)4-s + 457.·5-s + (−302. − 524. i)6-s + (171.5 + 297. i)7-s − 522.·8-s + (454. + 786. i)9-s + (3.87e3 − 6.71e3i)10-s + (559. − 969. i)11-s − 5.68e3·12-s + (3.32e3 − 7.18e3i)13-s + 5.80e3·14-s + (8.17e3 − 1.41e4i)15-s + (5.73e3 − 9.94e3i)16-s + (4.75e3 + 8.24e3i)17-s + ⋯ |
L(s) = 1 | + (0.748 − 1.29i)2-s + (0.382 − 0.662i)3-s + (−0.620 − 1.07i)4-s + 1.63·5-s + (−0.572 − 0.991i)6-s + (0.188 + 0.327i)7-s − 0.361·8-s + (0.207 + 0.359i)9-s + (1.22 − 2.12i)10-s + (0.126 − 0.219i)11-s − 0.948·12-s + (0.420 − 0.907i)13-s + 0.565·14-s + (0.625 − 1.08i)15-s + (0.350 − 0.606i)16-s + (0.234 + 0.406i)17-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)(−0.645+0.763i)Λ(8−s)
Λ(s)=(=(91s/2ΓC(s+7/2)L(s)(−0.645+0.763i)Λ(1−s)
Degree: |
2 |
Conductor: |
91
= 7⋅13
|
Sign: |
−0.645+0.763i
|
Analytic conductor: |
28.4270 |
Root analytic conductor: |
5.33170 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ91(22,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 91, ( :7/2), −0.645+0.763i)
|
Particular Values
L(4) |
≈ |
2.02713−4.36808i |
L(21) |
≈ |
2.02713−4.36808i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−171.5−297.i)T |
| 13 | 1+(−3.32e3+7.18e3i)T |
good | 2 | 1+(−8.46+14.6i)T+(−64−110.i)T2 |
| 3 | 1+(−17.8+30.9i)T+(−1.09e3−1.89e3i)T2 |
| 5 | 1−457.T+7.81e4T2 |
| 11 | 1+(−559.+969.i)T+(−9.74e6−1.68e7i)T2 |
| 17 | 1+(−4.75e3−8.24e3i)T+(−2.05e8+3.55e8i)T2 |
| 19 | 1+(8.06e3+1.39e4i)T+(−4.46e8+7.74e8i)T2 |
| 23 | 1+(4.38e4−7.60e4i)T+(−1.70e9−2.94e9i)T2 |
| 29 | 1+(−5.58e3+9.67e3i)T+(−8.62e9−1.49e10i)T2 |
| 31 | 1+2.91e5T+2.75e10T2 |
| 37 | 1+(−9.17e4+1.58e5i)T+(−4.74e10−8.22e10i)T2 |
| 41 | 1+(3.21e5−5.57e5i)T+(−9.73e10−1.68e11i)T2 |
| 43 | 1+(−2.72e5−4.71e5i)T+(−1.35e11+2.35e11i)T2 |
| 47 | 1+1.22e6T+5.06e11T2 |
| 53 | 1+8.49e5T+1.17e12T2 |
| 59 | 1+(−1.50e6−2.60e6i)T+(−1.24e12+2.15e12i)T2 |
| 61 | 1+(1.76e6+3.06e6i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(3.17e5−5.50e5i)T+(−3.03e12−5.24e12i)T2 |
| 71 | 1+(1.64e6+2.85e6i)T+(−4.54e12+7.87e12i)T2 |
| 73 | 1−3.29e6T+1.10e13T2 |
| 79 | 1+5.67e5T+1.92e13T2 |
| 83 | 1−5.08e6T+2.71e13T2 |
| 89 | 1+(−2.71e6+4.70e6i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1+(−2.60e6−4.50e6i)T+(−4.03e13+6.99e13i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.72244775609821630214284228493, −11.25962818099701690021044024518, −10.32535183988840881856064668089, −9.363264625716165483305520082577, −7.83739071988535454920720865144, −6.07393890500774785260655504184, −5.06682653728595495946901885531, −3.21077810133642138776277039197, −2.02937939334443700673485214692, −1.39660366364747744871421019126,
1.79699264273918409910249780886, 3.83554752531985777535597243337, 4.96850631024781740130857911349, 6.13516251691608848712738347965, 6.94132154394453577796686293599, 8.608963066392313768323838534710, 9.626103139461429567512672405202, 10.56735694321476439203875885205, 12.52238745693670661578059803337, 13.58656658893372669120362747199