L(s) = 1 | − 0.851·2-s + (−0.330 + 0.572i)3-s − 1.27·4-s + (−1.72 + 2.98i)5-s + (0.281 − 0.487i)6-s + (−2.57 − 0.617i)7-s + 2.78·8-s + (1.28 + 2.21i)9-s + (1.46 − 2.53i)10-s + (0.448 − 0.777i)11-s + (0.421 − 0.730i)12-s + (−3.07 + 1.88i)13-s + (2.18 + 0.525i)14-s + (−1.13 − 1.97i)15-s + 0.178·16-s + 1.93·17-s + ⋯ |
L(s) = 1 | − 0.601·2-s + (−0.190 + 0.330i)3-s − 0.637·4-s + (−0.769 + 1.33i)5-s + (0.114 − 0.198i)6-s + (−0.972 − 0.233i)7-s + 0.985·8-s + (0.427 + 0.739i)9-s + (0.463 − 0.802i)10-s + (0.135 − 0.234i)11-s + (0.121 − 0.210i)12-s + (−0.852 + 0.522i)13-s + (0.585 + 0.140i)14-s + (−0.293 − 0.508i)15-s + 0.0445·16-s + 0.469·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.601 - 0.798i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.601 - 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.177451 + 0.355736i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.177451 + 0.355736i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (2.57 + 0.617i)T \) |
| 13 | \( 1 + (3.07 - 1.88i)T \) |
good | 2 | \( 1 + 0.851T + 2T^{2} \) |
| 3 | \( 1 + (0.330 - 0.572i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (1.72 - 2.98i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.448 + 0.777i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 1.93T + 17T^{2} \) |
| 19 | \( 1 + (0.519 + 0.898i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 5.65T + 23T^{2} \) |
| 29 | \( 1 + (-0.917 - 1.58i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.56 - 7.91i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 10.6T + 37T^{2} \) |
| 41 | \( 1 + (-2.66 - 4.61i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.95 + 3.39i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (3.59 - 6.22i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.69 - 8.12i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 0.510T + 59T^{2} \) |
| 61 | \( 1 + (0.718 + 1.24i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.22 + 7.31i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.72 + 2.98i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.45 + 9.44i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.04 + 10.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 1.51T + 83T^{2} \) |
| 89 | \( 1 - 13.6T + 89T^{2} \) |
| 97 | \( 1 + (0.253 - 0.438i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.45353848006101049863513965181, −13.56658421476350821492391401083, −12.24790121391126754396280051165, −10.77455024135556811906807050382, −10.28620499940829679447630133924, −9.141028365110287160088974532982, −7.62411435973076939288279091632, −6.81900865071141253252545193097, −4.74818788486658011413846152620, −3.29798952854065220458022770473,
0.63091211390540319228885632549, 3.93957760638755693920728497407, 5.28070665609173707208846684148, 7.10834918617921672930999908620, 8.288156026789267064231410485179, 9.283226296690955590543801030425, 10.02774198793735375386511027296, 11.94474046935467690108321170515, 12.63750239703854009605067957248, 13.27359634478475569688698350235