L(s) = 1 | − 0.851·2-s + (−0.330 + 0.572i)3-s − 1.27·4-s + (−1.72 + 2.98i)5-s + (0.281 − 0.487i)6-s + (−2.57 − 0.617i)7-s + 2.78·8-s + (1.28 + 2.21i)9-s + (1.46 − 2.53i)10-s + (0.448 − 0.777i)11-s + (0.421 − 0.730i)12-s + (−3.07 + 1.88i)13-s + (2.18 + 0.525i)14-s + (−1.13 − 1.97i)15-s + 0.178·16-s + 1.93·17-s + ⋯ |
L(s) = 1 | − 0.601·2-s + (−0.190 + 0.330i)3-s − 0.637·4-s + (−0.769 + 1.33i)5-s + (0.114 − 0.198i)6-s + (−0.972 − 0.233i)7-s + 0.985·8-s + (0.427 + 0.739i)9-s + (0.463 − 0.802i)10-s + (0.135 − 0.234i)11-s + (0.121 − 0.210i)12-s + (−0.852 + 0.522i)13-s + (0.585 + 0.140i)14-s + (−0.293 − 0.508i)15-s + 0.0445·16-s + 0.469·17-s + ⋯ |
Λ(s)=(=(91s/2ΓC(s)L(s)(−0.601−0.798i)Λ(2−s)
Λ(s)=(=(91s/2ΓC(s+1/2)L(s)(−0.601−0.798i)Λ(1−s)
Degree: |
2 |
Conductor: |
91
= 7⋅13
|
Sign: |
−0.601−0.798i
|
Analytic conductor: |
0.726638 |
Root analytic conductor: |
0.852431 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ91(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 91, ( :1/2), −0.601−0.798i)
|
Particular Values
L(1) |
≈ |
0.177451+0.355736i |
L(21) |
≈ |
0.177451+0.355736i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(2.57+0.617i)T |
| 13 | 1+(3.07−1.88i)T |
good | 2 | 1+0.851T+2T2 |
| 3 | 1+(0.330−0.572i)T+(−1.5−2.59i)T2 |
| 5 | 1+(1.72−2.98i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−0.448+0.777i)T+(−5.5−9.52i)T2 |
| 17 | 1−1.93T+17T2 |
| 19 | 1+(0.519+0.898i)T+(−9.5+16.4i)T2 |
| 23 | 1−5.65T+23T2 |
| 29 | 1+(−0.917−1.58i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4.56−7.91i)T+(−15.5+26.8i)T2 |
| 37 | 1+10.6T+37T2 |
| 41 | 1+(−2.66−4.61i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−1.95+3.39i)T+(−21.5−37.2i)T2 |
| 47 | 1+(3.59−6.22i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−4.69−8.12i)T+(−26.5+45.8i)T2 |
| 59 | 1+0.510T+59T2 |
| 61 | 1+(0.718+1.24i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−4.22+7.31i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−1.72+2.98i)T+(−35.5−61.4i)T2 |
| 73 | 1+(5.45+9.44i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−6.04+10.4i)T+(−39.5−68.4i)T2 |
| 83 | 1−1.51T+83T2 |
| 89 | 1−13.6T+89T2 |
| 97 | 1+(0.253−0.438i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.45353848006101049863513965181, −13.56658421476350821492391401083, −12.24790121391126754396280051165, −10.77455024135556811906807050382, −10.28620499940829679447630133924, −9.141028365110287160088974532982, −7.62411435973076939288279091632, −6.81900865071141253252545193097, −4.74818788486658011413846152620, −3.29798952854065220458022770473,
0.63091211390540319228885632549, 3.93957760638755693920728497407, 5.28070665609173707208846684148, 7.10834918617921672930999908620, 8.288156026789267064231410485179, 9.283226296690955590543801030425, 10.02774198793735375386511027296, 11.94474046935467690108321170515, 12.63750239703854009605067957248, 13.27359634478475569688698350235