Properties

Label 2-912-1.1-c1-0-16
Degree $2$
Conductor $912$
Sign $-1$
Analytic cond. $7.28235$
Root an. cond. $2.69858$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s − 7-s + 9-s + 5·11-s − 6·13-s − 3·15-s − 5·17-s − 19-s − 21-s − 4·23-s + 4·25-s + 27-s + 6·29-s − 6·31-s + 5·33-s + 3·35-s − 8·37-s − 6·39-s − 8·41-s − 9·43-s − 3·45-s − 47-s − 6·49-s − 5·51-s + 2·53-s − 15·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s − 0.377·7-s + 1/3·9-s + 1.50·11-s − 1.66·13-s − 0.774·15-s − 1.21·17-s − 0.229·19-s − 0.218·21-s − 0.834·23-s + 4/5·25-s + 0.192·27-s + 1.11·29-s − 1.07·31-s + 0.870·33-s + 0.507·35-s − 1.31·37-s − 0.960·39-s − 1.24·41-s − 1.37·43-s − 0.447·45-s − 0.145·47-s − 6/7·49-s − 0.700·51-s + 0.274·53-s − 2.02·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(912\)    =    \(2^{4} \cdot 3 \cdot 19\)
Sign: $-1$
Analytic conductor: \(7.28235\)
Root analytic conductor: \(2.69858\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 912,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \)
7 \( 1 + T + p T^{2} \)
11 \( 1 - 5 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 + 6 T + p T^{2} \)
37 \( 1 + 8 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 9 T + p T^{2} \)
47 \( 1 + T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 - 11 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 4 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.585874925160168888904155563723, −8.743979403432894067002867605875, −8.098723763596542718825097439727, −6.98995551256525595204221630124, −6.70923923756293259323170265958, −4.96063409732475955643392332129, −4.09803140790119357857110127232, −3.38752685173358042429193565276, −2.02959224696734609090119252606, 0, 2.02959224696734609090119252606, 3.38752685173358042429193565276, 4.09803140790119357857110127232, 4.96063409732475955643392332129, 6.70923923756293259323170265958, 6.98995551256525595204221630124, 8.098723763596542718825097439727, 8.743979403432894067002867605875, 9.585874925160168888904155563723

Graph of the $Z$-function along the critical line