L(s) = 1 | + 3-s − 3·5-s − 7-s + 9-s + 5·11-s − 6·13-s − 3·15-s − 5·17-s − 19-s − 21-s − 4·23-s + 4·25-s + 27-s + 6·29-s − 6·31-s + 5·33-s + 3·35-s − 8·37-s − 6·39-s − 8·41-s − 9·43-s − 3·45-s − 47-s − 6·49-s − 5·51-s + 2·53-s − 15·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.34·5-s − 0.377·7-s + 1/3·9-s + 1.50·11-s − 1.66·13-s − 0.774·15-s − 1.21·17-s − 0.229·19-s − 0.218·21-s − 0.834·23-s + 4/5·25-s + 0.192·27-s + 1.11·29-s − 1.07·31-s + 0.870·33-s + 0.507·35-s − 1.31·37-s − 0.960·39-s − 1.24·41-s − 1.37·43-s − 0.447·45-s − 0.145·47-s − 6/7·49-s − 0.700·51-s + 0.274·53-s − 2.02·55-s + ⋯ |
Λ(s)=(=(912s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(912s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 19 | 1+T |
good | 5 | 1+3T+pT2 |
| 7 | 1+T+pT2 |
| 11 | 1−5T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1+5T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+6T+pT2 |
| 37 | 1+8T+pT2 |
| 41 | 1+8T+pT2 |
| 43 | 1+9T+pT2 |
| 47 | 1+T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−8T+pT2 |
| 61 | 1−11T+pT2 |
| 67 | 1+pT2 |
| 71 | 1−4T+pT2 |
| 73 | 1+11T+pT2 |
| 79 | 1−8T+pT2 |
| 83 | 1−4T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1+10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.585874925160168888904155563723, −8.743979403432894067002867605875, −8.098723763596542718825097439727, −6.98995551256525595204221630124, −6.70923923756293259323170265958, −4.96063409732475955643392332129, −4.09803140790119357857110127232, −3.38752685173358042429193565276, −2.02959224696734609090119252606, 0,
2.02959224696734609090119252606, 3.38752685173358042429193565276, 4.09803140790119357857110127232, 4.96063409732475955643392332129, 6.70923923756293259323170265958, 6.98995551256525595204221630124, 8.098723763596542718825097439727, 8.743979403432894067002867605875, 9.585874925160168888904155563723