L(s) = 1 | − 3·3-s − 7·5-s + 15·7-s + 9·9-s + 49·11-s + 14·13-s + 21·15-s − 33·17-s + 19·19-s − 45·21-s + 148·23-s − 76·25-s − 27·27-s − 278·29-s − 94·31-s − 147·33-s − 105·35-s + 160·37-s − 42·39-s + 400·41-s − 73·43-s − 63·45-s − 173·47-s − 118·49-s + 99·51-s + 170·53-s − 343·55-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.626·5-s + 0.809·7-s + 1/3·9-s + 1.34·11-s + 0.298·13-s + 0.361·15-s − 0.470·17-s + 0.229·19-s − 0.467·21-s + 1.34·23-s − 0.607·25-s − 0.192·27-s − 1.78·29-s − 0.544·31-s − 0.775·33-s − 0.507·35-s + 0.710·37-s − 0.172·39-s + 1.52·41-s − 0.258·43-s − 0.208·45-s − 0.536·47-s − 0.344·49-s + 0.271·51-s + 0.440·53-s − 0.840·55-s + ⋯ |
Λ(s)=(=(912s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(912s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.739924905 |
L(21) |
≈ |
1.739924905 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+pT |
| 19 | 1−pT |
good | 5 | 1+7T+p3T2 |
| 7 | 1−15T+p3T2 |
| 11 | 1−49T+p3T2 |
| 13 | 1−14T+p3T2 |
| 17 | 1+33T+p3T2 |
| 23 | 1−148T+p3T2 |
| 29 | 1+278T+p3T2 |
| 31 | 1+94T+p3T2 |
| 37 | 1−160T+p3T2 |
| 41 | 1−400T+p3T2 |
| 43 | 1+73T+p3T2 |
| 47 | 1+173T+p3T2 |
| 53 | 1−170T+p3T2 |
| 59 | 1−12T+p3T2 |
| 61 | 1−419T+p3T2 |
| 67 | 1+444T+p3T2 |
| 71 | 1−952T+p3T2 |
| 73 | 1+27T+p3T2 |
| 79 | 1−556T+p3T2 |
| 83 | 1−276T+p3T2 |
| 89 | 1−1386T+p3T2 |
| 97 | 1−130T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.556392717028457585239498153050, −8.973340666111262649883877927079, −7.904685113893163395493555917809, −7.18490926444383802894774417904, −6.27754130620658587456707528300, −5.29311764947051825021823018017, −4.32533145980041930446190233461, −3.58427192136092151025726774775, −1.87355512482263125898090653131, −0.77043222100486511123292230306,
0.77043222100486511123292230306, 1.87355512482263125898090653131, 3.58427192136092151025726774775, 4.32533145980041930446190233461, 5.29311764947051825021823018017, 6.27754130620658587456707528300, 7.18490926444383802894774417904, 7.904685113893163395493555917809, 8.973340666111262649883877927079, 9.556392717028457585239498153050