L(s) = 1 | + (0.766 + 0.642i)3-s + (−1.11 + 0.642i)7-s + (0.173 + 0.984i)9-s + (0.439 + 0.524i)13-s + (0.5 + 0.866i)19-s + (−1.26 − 0.223i)21-s + (0.766 − 0.642i)25-s + (−0.500 + 0.866i)27-s + (0.173 + 0.300i)31-s − 1.96i·37-s + 0.684i·39-s + (−0.673 − 1.85i)43-s + (0.326 − 0.565i)49-s + (−0.173 + 0.984i)57-s + (−1.76 − 0.642i)61-s + ⋯ |
L(s) = 1 | + (0.766 + 0.642i)3-s + (−1.11 + 0.642i)7-s + (0.173 + 0.984i)9-s + (0.439 + 0.524i)13-s + (0.5 + 0.866i)19-s + (−1.26 − 0.223i)21-s + (0.766 − 0.642i)25-s + (−0.500 + 0.866i)27-s + (0.173 + 0.300i)31-s − 1.96i·37-s + 0.684i·39-s + (−0.673 − 1.85i)43-s + (0.326 − 0.565i)49-s + (−0.173 + 0.984i)57-s + (−1.76 − 0.642i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.363 - 0.931i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.363 - 0.931i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.155739663\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.155739663\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.766 - 0.642i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (1.11 - 0.642i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.439 - 0.524i)T + (-0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 31 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + 1.96iT - T^{2} \) |
| 41 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 43 | \( 1 + (0.673 + 1.85i)T + (-0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (1.76 + 0.642i)T + (0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (0.266 + 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 73 | \( 1 + (-1.43 - 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (-1.17 - 0.984i)T + (0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (1.70 + 0.300i)T + (0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29751140044838181003372515374, −9.475359181056564897519919774634, −8.971901981826470917778346482464, −8.154762875238087233787601271124, −7.09117975733071958519193396551, −6.12019280026866542868229085820, −5.17166781731405271636363857033, −3.94567716652067600437599604543, −3.21362123084486307079913040451, −2.10856510065065962670930584359,
1.15741630604833331333751156162, 2.89034679860065617475391385705, 3.40817368674870713843355693494, 4.71136406018848628283843838057, 6.15299544050435080418855681501, 6.77643935112272604733710289559, 7.57428244983919508836667546422, 8.420918095431247227933722634904, 9.339487834319715711737943106764, 9.914205713540462480893395952009