L(s) = 1 | + (−0.766 − 0.642i)3-s + (0.766 + 1.32i)7-s + (0.173 + 0.984i)9-s + (−1.43 + 1.20i)13-s + (0.5 + 0.866i)19-s + (0.266 − 1.50i)21-s + (0.766 − 0.642i)25-s + (0.500 − 0.866i)27-s + (0.173 + 0.300i)31-s + 0.347·37-s + 1.87·39-s + (0.326 − 0.118i)43-s + (−0.673 + 1.16i)49-s + (0.173 − 0.984i)57-s + (1.76 + 0.642i)61-s + ⋯ |
L(s) = 1 | + (−0.766 − 0.642i)3-s + (0.766 + 1.32i)7-s + (0.173 + 0.984i)9-s + (−1.43 + 1.20i)13-s + (0.5 + 0.866i)19-s + (0.266 − 1.50i)21-s + (0.766 − 0.642i)25-s + (0.500 − 0.866i)27-s + (0.173 + 0.300i)31-s + 0.347·37-s + 1.87·39-s + (0.326 − 0.118i)43-s + (−0.673 + 1.16i)49-s + (0.173 − 0.984i)57-s + (1.76 + 0.642i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.776 - 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.776 - 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7785090024\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7785090024\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.766 + 0.642i)T \) |
| 19 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (-0.766 - 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (1.43 - 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 31 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - 0.347T + T^{2} \) |
| 41 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.326 + 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (-1.76 - 0.642i)T + (0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (0.266 + 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 73 | \( 1 + (1.43 + 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (1.17 + 0.984i)T + (0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.48889852050092989360402213402, −9.538234560475151885827212757006, −8.643723776672381609071210553169, −7.78288830874562989212292478032, −6.96005235402756335937360592385, −6.02897258846825674796587647910, −5.19202263432930426657095381939, −4.51270146605892299673393448812, −2.59443019736734478909813973360, −1.73102939741099338568308066525,
0.897879797936330743191016736577, 2.91483501260857518765720066120, 4.15852599832802457999956165105, 4.90754189264064532091556541060, 5.58203363676118635319975095362, 7.01400931352822952037165095139, 7.41644885854026472769038403821, 8.542212332971842085845523322022, 9.784322581990235479980890873378, 10.14785017164775717385138509866