L(s) = 1 | − 1.09·2-s − 1.39·3-s − 0.807·4-s − 1.62·5-s + 1.52·6-s + 3.06·8-s − 1.05·9-s + 1.77·10-s + 1.29·11-s + 1.12·12-s + 2.26·15-s − 1.73·16-s + 5.41·17-s + 1.14·18-s − 1.51·19-s + 1.31·20-s − 1.41·22-s − 2.64·23-s − 4.27·24-s − 2.35·25-s + 5.65·27-s + 5.81·29-s − 2.47·30-s + 7.28·31-s − 4.23·32-s − 1.80·33-s − 5.90·34-s + ⋯ |
L(s) = 1 | − 0.772·2-s − 0.805·3-s − 0.403·4-s − 0.727·5-s + 0.622·6-s + 1.08·8-s − 0.350·9-s + 0.561·10-s + 0.390·11-s + 0.325·12-s + 0.586·15-s − 0.433·16-s + 1.31·17-s + 0.270·18-s − 0.346·19-s + 0.293·20-s − 0.301·22-s − 0.550·23-s − 0.873·24-s − 0.470·25-s + 1.08·27-s + 1.08·29-s − 0.452·30-s + 1.30·31-s − 0.749·32-s − 0.314·33-s − 1.01·34-s + ⋯ |
Λ(s)=(=(8281s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(8281s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6042068426 |
L(21) |
≈ |
0.6042068426 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 13 | 1 |
good | 2 | 1+1.09T+2T2 |
| 3 | 1+1.39T+3T2 |
| 5 | 1+1.62T+5T2 |
| 11 | 1−1.29T+11T2 |
| 17 | 1−5.41T+17T2 |
| 19 | 1+1.51T+19T2 |
| 23 | 1+2.64T+23T2 |
| 29 | 1−5.81T+29T2 |
| 31 | 1−7.28T+31T2 |
| 37 | 1−6.95T+37T2 |
| 41 | 1+8.09T+41T2 |
| 43 | 1−11.1T+43T2 |
| 47 | 1−7.17T+47T2 |
| 53 | 1−4.66T+53T2 |
| 59 | 1−0.773T+59T2 |
| 61 | 1+8.74T+61T2 |
| 67 | 1+6.37T+67T2 |
| 71 | 1+11.9T+71T2 |
| 73 | 1−7.21T+73T2 |
| 79 | 1+11.7T+79T2 |
| 83 | 1−8.42T+83T2 |
| 89 | 1+1.66T+89T2 |
| 97 | 1−12.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.72792911789640590073492791498, −7.47727290614848447334733171690, −6.30739567541096766403262053037, −5.89762849235619401581026237221, −4.93689194756712455859006501874, −4.37935660453765164003047917938, −3.63208102599414868160534190036, −2.60582284440693825623472518388, −1.22195767521668794103994724812, −0.53227070040051855052438261630,
0.53227070040051855052438261630, 1.22195767521668794103994724812, 2.60582284440693825623472518388, 3.63208102599414868160534190036, 4.37935660453765164003047917938, 4.93689194756712455859006501874, 5.89762849235619401581026237221, 6.30739567541096766403262053037, 7.47727290614848447334733171690, 7.72792911789640590073492791498