Properties

Label 2-91e2-1.1-c1-0-100
Degree $2$
Conductor $8281$
Sign $1$
Analytic cond. $66.1241$
Root an. cond. $8.13167$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.09·2-s − 1.39·3-s − 0.807·4-s − 1.62·5-s + 1.52·6-s + 3.06·8-s − 1.05·9-s + 1.77·10-s + 1.29·11-s + 1.12·12-s + 2.26·15-s − 1.73·16-s + 5.41·17-s + 1.14·18-s − 1.51·19-s + 1.31·20-s − 1.41·22-s − 2.64·23-s − 4.27·24-s − 2.35·25-s + 5.65·27-s + 5.81·29-s − 2.47·30-s + 7.28·31-s − 4.23·32-s − 1.80·33-s − 5.90·34-s + ⋯
L(s)  = 1  − 0.772·2-s − 0.805·3-s − 0.403·4-s − 0.727·5-s + 0.622·6-s + 1.08·8-s − 0.350·9-s + 0.561·10-s + 0.390·11-s + 0.325·12-s + 0.586·15-s − 0.433·16-s + 1.31·17-s + 0.270·18-s − 0.346·19-s + 0.293·20-s − 0.301·22-s − 0.550·23-s − 0.873·24-s − 0.470·25-s + 1.08·27-s + 1.08·29-s − 0.452·30-s + 1.30·31-s − 0.749·32-s − 0.314·33-s − 1.01·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8281 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8281\)    =    \(7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(66.1241\)
Root analytic conductor: \(8.13167\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8281,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6042068426\)
\(L(\frac12)\) \(\approx\) \(0.6042068426\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 \)
good2 \( 1 + 1.09T + 2T^{2} \)
3 \( 1 + 1.39T + 3T^{2} \)
5 \( 1 + 1.62T + 5T^{2} \)
11 \( 1 - 1.29T + 11T^{2} \)
17 \( 1 - 5.41T + 17T^{2} \)
19 \( 1 + 1.51T + 19T^{2} \)
23 \( 1 + 2.64T + 23T^{2} \)
29 \( 1 - 5.81T + 29T^{2} \)
31 \( 1 - 7.28T + 31T^{2} \)
37 \( 1 - 6.95T + 37T^{2} \)
41 \( 1 + 8.09T + 41T^{2} \)
43 \( 1 - 11.1T + 43T^{2} \)
47 \( 1 - 7.17T + 47T^{2} \)
53 \( 1 - 4.66T + 53T^{2} \)
59 \( 1 - 0.773T + 59T^{2} \)
61 \( 1 + 8.74T + 61T^{2} \)
67 \( 1 + 6.37T + 67T^{2} \)
71 \( 1 + 11.9T + 71T^{2} \)
73 \( 1 - 7.21T + 73T^{2} \)
79 \( 1 + 11.7T + 79T^{2} \)
83 \( 1 - 8.42T + 83T^{2} \)
89 \( 1 + 1.66T + 89T^{2} \)
97 \( 1 - 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72792911789640590073492791498, −7.47727290614848447334733171690, −6.30739567541096766403262053037, −5.89762849235619401581026237221, −4.93689194756712455859006501874, −4.37935660453765164003047917938, −3.63208102599414868160534190036, −2.60582284440693825623472518388, −1.22195767521668794103994724812, −0.53227070040051855052438261630, 0.53227070040051855052438261630, 1.22195767521668794103994724812, 2.60582284440693825623472518388, 3.63208102599414868160534190036, 4.37935660453765164003047917938, 4.93689194756712455859006501874, 5.89762849235619401581026237221, 6.30739567541096766403262053037, 7.47727290614848447334733171690, 7.72792911789640590073492791498

Graph of the $Z$-function along the critical line