L(s) = 1 | + (0.205 − 1.42i)3-s + (−104. + 30.5i)5-s + (−109. − 126. i)7-s + (231. + 67.8i)9-s + (468. + 300. i)11-s + (640. − 738. i)13-s + (22.2 + 155. i)15-s + (762. + 1.66e3i)17-s + (−16.7 + 36.6i)19-s + (−202. + 130. i)21-s + (−2.21e3 − 1.23e3i)23-s + (7.28e3 − 4.68e3i)25-s + (290. − 635. i)27-s + (568. + 1.24e3i)29-s + (519. + 3.61e3i)31-s + ⋯ |
L(s) = 1 | + (0.0131 − 0.0916i)3-s + (−1.86 + 0.547i)5-s + (−0.843 − 0.972i)7-s + (0.951 + 0.279i)9-s + (1.16 + 0.749i)11-s + (1.05 − 1.21i)13-s + (0.0255 + 0.177i)15-s + (0.639 + 1.40i)17-s + (−0.0106 + 0.0232i)19-s + (−0.100 + 0.0644i)21-s + (−0.872 − 0.487i)23-s + (2.33 − 1.49i)25-s + (0.0765 − 0.167i)27-s + (0.125 + 0.274i)29-s + (0.0971 + 0.675i)31-s + ⋯ |
Λ(s)=(=(92s/2ΓC(s)L(s)(0.999−0.0211i)Λ(6−s)
Λ(s)=(=(92s/2ΓC(s+5/2)L(s)(0.999−0.0211i)Λ(1−s)
Degree: |
2 |
Conductor: |
92
= 22⋅23
|
Sign: |
0.999−0.0211i
|
Analytic conductor: |
14.7553 |
Root analytic conductor: |
3.84126 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ92(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 92, ( :5/2), 0.999−0.0211i)
|
Particular Values
L(3) |
≈ |
1.30636+0.0138419i |
L(21) |
≈ |
1.30636+0.0138419i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+(2.21e3+1.23e3i)T |
good | 3 | 1+(−0.205+1.42i)T+(−233.−68.4i)T2 |
| 5 | 1+(104.−30.5i)T+(2.62e3−1.68e3i)T2 |
| 7 | 1+(109.+126.i)T+(−2.39e3+1.66e4i)T2 |
| 11 | 1+(−468.−300.i)T+(6.69e4+1.46e5i)T2 |
| 13 | 1+(−640.+738.i)T+(−5.28e4−3.67e5i)T2 |
| 17 | 1+(−762.−1.66e3i)T+(−9.29e5+1.07e6i)T2 |
| 19 | 1+(16.7−36.6i)T+(−1.62e6−1.87e6i)T2 |
| 29 | 1+(−568.−1.24e3i)T+(−1.34e7+1.55e7i)T2 |
| 31 | 1+(−519.−3.61e3i)T+(−2.74e7+8.06e6i)T2 |
| 37 | 1+(−2.05e3−602.i)T+(5.83e7+3.74e7i)T2 |
| 41 | 1+(−5.79e3+1.70e3i)T+(9.74e7−6.26e7i)T2 |
| 43 | 1+(−1.76e3+1.22e4i)T+(−1.41e8−4.14e7i)T2 |
| 47 | 1−1.77e4T+2.29e8T2 |
| 53 | 1+(3.18e3+3.67e3i)T+(−5.95e7+4.13e8i)T2 |
| 59 | 1+(−7.04e3+8.13e3i)T+(−1.01e8−7.07e8i)T2 |
| 61 | 1+(−2.15e3−1.49e4i)T+(−8.10e8+2.37e8i)T2 |
| 67 | 1+(−3.57e4+2.29e4i)T+(5.60e8−1.22e9i)T2 |
| 71 | 1+(−3.23e4+2.08e4i)T+(7.49e8−1.64e9i)T2 |
| 73 | 1+(1.71e4−3.76e4i)T+(−1.35e9−1.56e9i)T2 |
| 79 | 1+(4.13e4−4.76e4i)T+(−4.37e8−3.04e9i)T2 |
| 83 | 1+(−1.02e4−3.01e3i)T+(3.31e9+2.12e9i)T2 |
| 89 | 1+(1.64e4−1.14e5i)T+(−5.35e9−1.57e9i)T2 |
| 97 | 1+(−8.11e4+2.38e4i)T+(7.22e9−4.64e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.80653151135812007547894008752, −12.22246963853905420931736529333, −10.78732429873552411217998569246, −10.19421235578724598753005232224, −8.323238660923036938962787014239, −7.39778411895354508161696732525, −6.53419789821950847852823500612, −4.04826550191508799573772793825, −3.65848405475102204938017143331, −0.878652919611415370364722331655,
0.862620232942329620137426373118, 3.48039367669819132561797405899, 4.31504247313583446473896950418, 6.23013390466170782622118423569, 7.45694471681466119760695663434, 8.792565950376566812556391386060, 9.451968258929096507075813062261, 11.53473207542838542240167763263, 11.77726299475951208071687173774, 12.83119663184158574702506166400