Properties

Label 2-92-23.12-c5-0-5
Degree 22
Conductor 9292
Sign 0.838+0.544i0.838 + 0.544i
Analytic cond. 14.755314.7553
Root an. cond. 3.841263.84126
Motivic weight 55
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.81 − 19.5i)3-s + (−3.30 + 0.969i)5-s + (157. + 182. i)7-s + (−140. − 41.3i)9-s + (597. + 383. i)11-s + (200. − 231. i)13-s + (9.66 + 67.2i)15-s + (−525. − 1.15e3i)17-s + (258. − 566. i)19-s + (4.00e3 − 2.57e3i)21-s + (−1.13e3 − 2.26e3i)23-s + (−2.61e3 + 1.68e3i)25-s + (787. − 1.72e3i)27-s + (2.65e3 + 5.81e3i)29-s + (−99.0 − 689. i)31-s + ⋯
L(s)  = 1  + (0.180 − 1.25i)3-s + (−0.0590 + 0.0173i)5-s + (1.21 + 1.40i)7-s + (−0.580 − 0.170i)9-s + (1.48 + 0.956i)11-s + (0.329 − 0.380i)13-s + (0.0110 + 0.0771i)15-s + (−0.441 − 0.965i)17-s + (0.164 − 0.359i)19-s + (1.98 − 1.27i)21-s + (−0.447 − 0.894i)23-s + (−0.838 + 0.538i)25-s + (0.208 − 0.455i)27-s + (0.586 + 1.28i)29-s + (−0.0185 − 0.128i)31-s + ⋯

Functional equation

Λ(s)=(92s/2ΓC(s)L(s)=((0.838+0.544i)Λ(6s)\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.838 + 0.544i)\, \overline{\Lambda}(6-s) \end{aligned}
Λ(s)=(92s/2ΓC(s+5/2)L(s)=((0.838+0.544i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 92 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.838 + 0.544i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 9292    =    22232^{2} \cdot 23
Sign: 0.838+0.544i0.838 + 0.544i
Analytic conductor: 14.755314.7553
Root analytic conductor: 3.841263.84126
Motivic weight: 55
Rational: no
Arithmetic: yes
Character: χ92(81,)\chi_{92} (81, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 92, ( :5/2), 0.838+0.544i)(2,\ 92,\ (\ :5/2),\ 0.838 + 0.544i)

Particular Values

L(3)L(3) \approx 2.256940.668535i2.25694 - 0.668535i
L(12)L(\frac12) \approx 2.256940.668535i2.25694 - 0.668535i
L(72)L(\frac{7}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
23 1+(1.13e3+2.26e3i)T 1 + (1.13e3 + 2.26e3i)T
good3 1+(2.81+19.5i)T+(233.68.4i)T2 1 + (-2.81 + 19.5i)T + (-233. - 68.4i)T^{2}
5 1+(3.300.969i)T+(2.62e31.68e3i)T2 1 + (3.30 - 0.969i)T + (2.62e3 - 1.68e3i)T^{2}
7 1+(157.182.i)T+(2.39e3+1.66e4i)T2 1 + (-157. - 182. i)T + (-2.39e3 + 1.66e4i)T^{2}
11 1+(597.383.i)T+(6.69e4+1.46e5i)T2 1 + (-597. - 383. i)T + (6.69e4 + 1.46e5i)T^{2}
13 1+(200.+231.i)T+(5.28e43.67e5i)T2 1 + (-200. + 231. i)T + (-5.28e4 - 3.67e5i)T^{2}
17 1+(525.+1.15e3i)T+(9.29e5+1.07e6i)T2 1 + (525. + 1.15e3i)T + (-9.29e5 + 1.07e6i)T^{2}
19 1+(258.+566.i)T+(1.62e61.87e6i)T2 1 + (-258. + 566. i)T + (-1.62e6 - 1.87e6i)T^{2}
29 1+(2.65e35.81e3i)T+(1.34e7+1.55e7i)T2 1 + (-2.65e3 - 5.81e3i)T + (-1.34e7 + 1.55e7i)T^{2}
31 1+(99.0+689.i)T+(2.74e7+8.06e6i)T2 1 + (99.0 + 689. i)T + (-2.74e7 + 8.06e6i)T^{2}
37 1+(9.28e32.72e3i)T+(5.83e7+3.74e7i)T2 1 + (-9.28e3 - 2.72e3i)T + (5.83e7 + 3.74e7i)T^{2}
41 1+(1.18e4+3.47e3i)T+(9.74e76.26e7i)T2 1 + (-1.18e4 + 3.47e3i)T + (9.74e7 - 6.26e7i)T^{2}
43 1+(930.6.47e3i)T+(1.41e84.14e7i)T2 1 + (930. - 6.47e3i)T + (-1.41e8 - 4.14e7i)T^{2}
47 15.91e3T+2.29e8T2 1 - 5.91e3T + 2.29e8T^{2}
53 1+(1.15e4+1.33e4i)T+(5.95e7+4.13e8i)T2 1 + (1.15e4 + 1.33e4i)T + (-5.95e7 + 4.13e8i)T^{2}
59 1+(1.54e4+1.78e4i)T+(1.01e87.07e8i)T2 1 + (-1.54e4 + 1.78e4i)T + (-1.01e8 - 7.07e8i)T^{2}
61 1+(5.50e3+3.82e4i)T+(8.10e8+2.37e8i)T2 1 + (5.50e3 + 3.82e4i)T + (-8.10e8 + 2.37e8i)T^{2}
67 1+(5.21e43.35e4i)T+(5.60e81.22e9i)T2 1 + (5.21e4 - 3.35e4i)T + (5.60e8 - 1.22e9i)T^{2}
71 1+(6.65e3+4.27e3i)T+(7.49e81.64e9i)T2 1 + (-6.65e3 + 4.27e3i)T + (7.49e8 - 1.64e9i)T^{2}
73 1+(1.58e43.48e4i)T+(1.35e91.56e9i)T2 1 + (1.58e4 - 3.48e4i)T + (-1.35e9 - 1.56e9i)T^{2}
79 1+(5.12e4+5.91e4i)T+(4.37e83.04e9i)T2 1 + (-5.12e4 + 5.91e4i)T + (-4.37e8 - 3.04e9i)T^{2}
83 1+(9.82e4+2.88e4i)T+(3.31e9+2.12e9i)T2 1 + (9.82e4 + 2.88e4i)T + (3.31e9 + 2.12e9i)T^{2}
89 1+(7.17e34.99e4i)T+(5.35e91.57e9i)T2 1 + (7.17e3 - 4.99e4i)T + (-5.35e9 - 1.57e9i)T^{2}
97 1+(6.86e4+2.01e4i)T+(7.22e94.64e9i)T2 1 + (-6.86e4 + 2.01e4i)T + (7.22e9 - 4.64e9i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.80190387716949960550241457448, −12.00862799936140758373173690569, −11.34914400074109874155163020367, −9.374229284133246619910258200571, −8.418507368370636466371848227032, −7.33746242351037732437028080593, −6.20394543570838435424452415850, −4.69386064709648188400141237228, −2.38886925339013823407640842905, −1.34181176413204057913405886102, 1.26011701122749270366942029523, 3.98969226768843535453262030415, 4.18801163280361463998808555444, 6.09289445384725342438826892262, 7.75365813262999552107986897117, 8.871056347733284365767048178963, 10.02695522879747183935928471401, 10.97751884800803171604559415964, 11.68560201540598642132481765855, 13.67863512732734917222174933041

Graph of the ZZ-function along the critical line