L(s) = 1 | + (2.81 − 19.5i)3-s + (−3.30 + 0.969i)5-s + (157. + 182. i)7-s + (−140. − 41.3i)9-s + (597. + 383. i)11-s + (200. − 231. i)13-s + (9.66 + 67.2i)15-s + (−525. − 1.15e3i)17-s + (258. − 566. i)19-s + (4.00e3 − 2.57e3i)21-s + (−1.13e3 − 2.26e3i)23-s + (−2.61e3 + 1.68e3i)25-s + (787. − 1.72e3i)27-s + (2.65e3 + 5.81e3i)29-s + (−99.0 − 689. i)31-s + ⋯ |
L(s) = 1 | + (0.180 − 1.25i)3-s + (−0.0590 + 0.0173i)5-s + (1.21 + 1.40i)7-s + (−0.580 − 0.170i)9-s + (1.48 + 0.956i)11-s + (0.329 − 0.380i)13-s + (0.0110 + 0.0771i)15-s + (−0.441 − 0.965i)17-s + (0.164 − 0.359i)19-s + (1.98 − 1.27i)21-s + (−0.447 − 0.894i)23-s + (−0.838 + 0.538i)25-s + (0.208 − 0.455i)27-s + (0.586 + 1.28i)29-s + (−0.0185 − 0.128i)31-s + ⋯ |
Λ(s)=(=(92s/2ΓC(s)L(s)(0.838+0.544i)Λ(6−s)
Λ(s)=(=(92s/2ΓC(s+5/2)L(s)(0.838+0.544i)Λ(1−s)
Degree: |
2 |
Conductor: |
92
= 22⋅23
|
Sign: |
0.838+0.544i
|
Analytic conductor: |
14.7553 |
Root analytic conductor: |
3.84126 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ92(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 92, ( :5/2), 0.838+0.544i)
|
Particular Values
L(3) |
≈ |
2.25694−0.668535i |
L(21) |
≈ |
2.25694−0.668535i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+(1.13e3+2.26e3i)T |
good | 3 | 1+(−2.81+19.5i)T+(−233.−68.4i)T2 |
| 5 | 1+(3.30−0.969i)T+(2.62e3−1.68e3i)T2 |
| 7 | 1+(−157.−182.i)T+(−2.39e3+1.66e4i)T2 |
| 11 | 1+(−597.−383.i)T+(6.69e4+1.46e5i)T2 |
| 13 | 1+(−200.+231.i)T+(−5.28e4−3.67e5i)T2 |
| 17 | 1+(525.+1.15e3i)T+(−9.29e5+1.07e6i)T2 |
| 19 | 1+(−258.+566.i)T+(−1.62e6−1.87e6i)T2 |
| 29 | 1+(−2.65e3−5.81e3i)T+(−1.34e7+1.55e7i)T2 |
| 31 | 1+(99.0+689.i)T+(−2.74e7+8.06e6i)T2 |
| 37 | 1+(−9.28e3−2.72e3i)T+(5.83e7+3.74e7i)T2 |
| 41 | 1+(−1.18e4+3.47e3i)T+(9.74e7−6.26e7i)T2 |
| 43 | 1+(930.−6.47e3i)T+(−1.41e8−4.14e7i)T2 |
| 47 | 1−5.91e3T+2.29e8T2 |
| 53 | 1+(1.15e4+1.33e4i)T+(−5.95e7+4.13e8i)T2 |
| 59 | 1+(−1.54e4+1.78e4i)T+(−1.01e8−7.07e8i)T2 |
| 61 | 1+(5.50e3+3.82e4i)T+(−8.10e8+2.37e8i)T2 |
| 67 | 1+(5.21e4−3.35e4i)T+(5.60e8−1.22e9i)T2 |
| 71 | 1+(−6.65e3+4.27e3i)T+(7.49e8−1.64e9i)T2 |
| 73 | 1+(1.58e4−3.48e4i)T+(−1.35e9−1.56e9i)T2 |
| 79 | 1+(−5.12e4+5.91e4i)T+(−4.37e8−3.04e9i)T2 |
| 83 | 1+(9.82e4+2.88e4i)T+(3.31e9+2.12e9i)T2 |
| 89 | 1+(7.17e3−4.99e4i)T+(−5.35e9−1.57e9i)T2 |
| 97 | 1+(−6.86e4+2.01e4i)T+(7.22e9−4.64e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.80190387716949960550241457448, −12.00862799936140758373173690569, −11.34914400074109874155163020367, −9.374229284133246619910258200571, −8.418507368370636466371848227032, −7.33746242351037732437028080593, −6.20394543570838435424452415850, −4.69386064709648188400141237228, −2.38886925339013823407640842905, −1.34181176413204057913405886102,
1.26011701122749270366942029523, 3.98969226768843535453262030415, 4.18801163280361463998808555444, 6.09289445384725342438826892262, 7.75365813262999552107986897117, 8.871056347733284365767048178963, 10.02695522879747183935928471401, 10.97751884800803171604559415964, 11.68560201540598642132481765855, 13.67863512732734917222174933041