L(s) = 1 | + (−7.14 + 4.59i)3-s + (−4.30 − 9.42i)5-s + (54.2 − 15.9i)7-s + (−70.9 + 155. i)9-s + (−60.7 − 70.1i)11-s + (−336. − 98.9i)13-s + (73.9 + 47.5i)15-s + (297. − 2.06e3i)17-s + (−62.3 − 433. i)19-s + (−314. + 363. i)21-s + (−30.3 − 2.53e3i)23-s + (1.97e3 − 2.28e3i)25-s + (−500. − 3.47e3i)27-s + (−294. + 2.04e3i)29-s + (−6.24e3 − 4.01e3i)31-s + ⋯ |
L(s) = 1 | + (−0.458 + 0.294i)3-s + (−0.0769 − 0.168i)5-s + (0.418 − 0.122i)7-s + (−0.292 + 0.639i)9-s + (−0.151 − 0.174i)11-s + (−0.552 − 0.162i)13-s + (0.0848 + 0.0545i)15-s + (0.249 − 1.73i)17-s + (−0.0396 − 0.275i)19-s + (−0.155 + 0.179i)21-s + (−0.0119 − 0.999i)23-s + (0.632 − 0.729i)25-s + (−0.132 − 0.918i)27-s + (−0.0649 + 0.451i)29-s + (−1.16 − 0.750i)31-s + ⋯ |
Λ(s)=(=(92s/2ΓC(s)L(s)(−0.142+0.989i)Λ(6−s)
Λ(s)=(=(92s/2ΓC(s+5/2)L(s)(−0.142+0.989i)Λ(1−s)
Degree: |
2 |
Conductor: |
92
= 22⋅23
|
Sign: |
−0.142+0.989i
|
Analytic conductor: |
14.7553 |
Root analytic conductor: |
3.84126 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ92(85,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 92, ( :5/2), −0.142+0.989i)
|
Particular Values
L(3) |
≈ |
0.588581−0.679131i |
L(21) |
≈ |
0.588581−0.679131i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+(30.3+2.53e3i)T |
good | 3 | 1+(7.14−4.59i)T+(100.−221.i)T2 |
| 5 | 1+(4.30+9.42i)T+(−2.04e3+2.36e3i)T2 |
| 7 | 1+(−54.2+15.9i)T+(1.41e4−9.08e3i)T2 |
| 11 | 1+(60.7+70.1i)T+(−2.29e4+1.59e5i)T2 |
| 13 | 1+(336.+98.9i)T+(3.12e5+2.00e5i)T2 |
| 17 | 1+(−297.+2.06e3i)T+(−1.36e6−4.00e5i)T2 |
| 19 | 1+(62.3+433.i)T+(−2.37e6+6.97e5i)T2 |
| 29 | 1+(294.−2.04e3i)T+(−1.96e7−5.77e6i)T2 |
| 31 | 1+(6.24e3+4.01e3i)T+(1.18e7+2.60e7i)T2 |
| 37 | 1+(−4.19e3+9.17e3i)T+(−4.54e7−5.24e7i)T2 |
| 41 | 1+(−316.−694.i)T+(−7.58e7+8.75e7i)T2 |
| 43 | 1+(7.74e3−4.97e3i)T+(6.10e7−1.33e8i)T2 |
| 47 | 1+9.13e3T+2.29e8T2 |
| 53 | 1+(−2.85e4+8.38e3i)T+(3.51e8−2.26e8i)T2 |
| 59 | 1+(7.86e3+2.30e3i)T+(6.01e8+3.86e8i)T2 |
| 61 | 1+(−5.63e3−3.62e3i)T+(3.50e8+7.68e8i)T2 |
| 67 | 1+(−930.+1.07e3i)T+(−1.92e8−1.33e9i)T2 |
| 71 | 1+(1.44e4−1.66e4i)T+(−2.56e8−1.78e9i)T2 |
| 73 | 1+(−6.81e3−4.74e4i)T+(−1.98e9+5.84e8i)T2 |
| 79 | 1+(−2.75e4−8.09e3i)T+(2.58e9+1.66e9i)T2 |
| 83 | 1+(3.80e4−8.33e4i)T+(−2.57e9−2.97e9i)T2 |
| 89 | 1+(−6.39e4+4.11e4i)T+(2.31e9−5.07e9i)T2 |
| 97 | 1+(4.13e3+9.05e3i)T+(−5.62e9+6.48e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.73927390238194171342992077400, −11.56938416604228011902257038797, −10.79658813816145235325298166872, −9.612766550735735208353370441627, −8.286510721934009854975625046423, −7.12406485815913856946958122937, −5.46042895707427541036345511284, −4.58117632003368084224203055969, −2.56963910741586884545490264652, −0.38642455630537674345015378047,
1.56520459256704456833175817735, 3.55134601120161229754577687887, 5.26450011311497926330441046561, 6.43072198561875065390956260194, 7.67547147761005193974373667047, 8.938151933757543249533337833208, 10.26129001058863420401737230093, 11.38294134970274625644757268489, 12.24987492607035480579598607204, 13.19968321021743691608912095768