L(s) = 1 | + (−3.49 + 4.03i)3-s + (−12.4 + 86.8i)5-s + (−77.3 − 169. i)7-s + (30.5 + 212. i)9-s + (−341. + 100. i)11-s + (260. − 569. i)13-s + (−306. − 354. i)15-s + (1.66e3 − 1.06e3i)17-s + (−1.79e3 − 1.15e3i)19-s + (953. + 280. i)21-s + (−2.48e3 + 532. i)23-s + (−4.39e3 − 1.29e3i)25-s + (−2.05e3 − 1.31e3i)27-s + (−1.14e3 + 733. i)29-s + (−4.54e3 − 5.25e3i)31-s + ⋯ |
L(s) = 1 | + (−0.224 + 0.258i)3-s + (−0.223 + 1.55i)5-s + (−0.596 − 1.30i)7-s + (0.125 + 0.873i)9-s + (−0.851 + 0.249i)11-s + (0.427 − 0.935i)13-s + (−0.352 − 0.406i)15-s + (1.39 − 0.897i)17-s + (−1.14 − 0.734i)19-s + (0.471 + 0.138i)21-s + (−0.977 + 0.209i)23-s + (−1.40 − 0.413i)25-s + (−0.542 − 0.348i)27-s + (−0.251 + 0.161i)29-s + (−0.850 − 0.981i)31-s + ⋯ |
Λ(s)=(=(92s/2ΓC(s)L(s)(−0.583+0.812i)Λ(6−s)
Λ(s)=(=(92s/2ΓC(s+5/2)L(s)(−0.583+0.812i)Λ(1−s)
Degree: |
2 |
Conductor: |
92
= 22⋅23
|
Sign: |
−0.583+0.812i
|
Analytic conductor: |
14.7553 |
Root analytic conductor: |
3.84126 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ92(41,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 92, ( :5/2), −0.583+0.812i)
|
Particular Values
L(3) |
≈ |
0.0980892−0.191116i |
L(21) |
≈ |
0.0980892−0.191116i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+(2.48e3−532.i)T |
good | 3 | 1+(3.49−4.03i)T+(−34.5−240.i)T2 |
| 5 | 1+(12.4−86.8i)T+(−2.99e3−880.i)T2 |
| 7 | 1+(77.3+169.i)T+(−1.10e4+1.27e4i)T2 |
| 11 | 1+(341.−100.i)T+(1.35e5−8.70e4i)T2 |
| 13 | 1+(−260.+569.i)T+(−2.43e5−2.80e5i)T2 |
| 17 | 1+(−1.66e3+1.06e3i)T+(5.89e5−1.29e6i)T2 |
| 19 | 1+(1.79e3+1.15e3i)T+(1.02e6+2.25e6i)T2 |
| 29 | 1+(1.14e3−733.i)T+(8.52e6−1.86e7i)T2 |
| 31 | 1+(4.54e3+5.25e3i)T+(−4.07e6+2.83e7i)T2 |
| 37 | 1+(1.69e3+1.18e4i)T+(−6.65e7+1.95e7i)T2 |
| 41 | 1+(1.36e3−9.47e3i)T+(−1.11e8−3.26e7i)T2 |
| 43 | 1+(−1.78e3+2.05e3i)T+(−2.09e7−1.45e8i)T2 |
| 47 | 1+2.52e3T+2.29e8T2 |
| 53 | 1+(−7.59e3−1.66e4i)T+(−2.73e8+3.16e8i)T2 |
| 59 | 1+(8.39e3−1.83e4i)T+(−4.68e8−5.40e8i)T2 |
| 61 | 1+(−2.02e4−2.33e4i)T+(−1.20e8+8.35e8i)T2 |
| 67 | 1+(−6.47e4−1.90e4i)T+(1.13e9+7.29e8i)T2 |
| 71 | 1+(5.71e4+1.67e4i)T+(1.51e9+9.75e8i)T2 |
| 73 | 1+(6.82e4+4.38e4i)T+(8.61e8+1.88e9i)T2 |
| 79 | 1+(3.39e4−7.44e4i)T+(−2.01e9−2.32e9i)T2 |
| 83 | 1+(1.34e3+9.32e3i)T+(−3.77e9+1.10e9i)T2 |
| 89 | 1+(2.45e3−2.83e3i)T+(−7.94e8−5.52e9i)T2 |
| 97 | 1+(586.−4.08e3i)T+(−8.23e9−2.41e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.95347032972236624181934641136, −11.22434891676474053598539702895, −10.48878644164788898445466335521, −10.02738933667835830825465142751, −7.72964380813299414117373820351, −7.21559759198490631040393957364, −5.71653053824520360171200634251, −3.96239014093520708439183137389, −2.71093686263478497429868535632, −0.086885101840385521981645747357,
1.62884879599496011199679969607, 3.76456460125041633949977201117, 5.40305442811258417981378240387, 6.26068756519420728249382706414, 8.228239483895275777231970297586, 8.872936633517850915043977565247, 10.00758252263983240412575883211, 11.82505688322042916678818431102, 12.46296663636994886723186180127, 12.95848685928459114526641019960