L(s) = 1 | + (−0.446 + 1.34i)2-s + (−1.95 + 0.891i)3-s + (−1.60 − 1.19i)4-s + (−1.03 + 0.895i)5-s + (−0.323 − 3.01i)6-s + (−2.14 − 1.38i)7-s + (2.32 − 1.61i)8-s + (1.04 − 1.21i)9-s + (−0.739 − 1.78i)10-s + (0.745 + 5.18i)11-s + (4.19 + 0.913i)12-s + (−3.68 + 2.37i)13-s + (2.81 − 2.26i)14-s + (1.21 − 2.66i)15-s + (1.12 + 3.83i)16-s + (−0.725 − 2.46i)17-s + ⋯ |
L(s) = 1 | + (−0.315 + 0.948i)2-s + (−1.12 + 0.514i)3-s + (−0.800 − 0.599i)4-s + (−0.461 + 0.400i)5-s + (−0.132 − 1.23i)6-s + (−0.811 − 0.521i)7-s + (0.821 − 0.570i)8-s + (0.349 − 0.403i)9-s + (−0.233 − 0.564i)10-s + (0.224 + 1.56i)11-s + (1.21 + 0.263i)12-s + (−1.02 + 0.657i)13-s + (0.751 − 0.605i)14-s + (0.314 − 0.688i)15-s + (0.281 + 0.959i)16-s + (−0.175 − 0.598i)17-s + ⋯ |
Λ(s)=(=(92s/2ΓC(s)L(s)(−0.971+0.238i)Λ(2−s)
Λ(s)=(=(92s/2ΓC(s+1/2)L(s)(−0.971+0.238i)Λ(1−s)
Degree: |
2 |
Conductor: |
92
= 22⋅23
|
Sign: |
−0.971+0.238i
|
Analytic conductor: |
0.734623 |
Root analytic conductor: |
0.857101 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ92(15,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 92, ( :1/2), −0.971+0.238i)
|
Particular Values
L(1) |
≈ |
0.0369143−0.304636i |
L(21) |
≈ |
0.0369143−0.304636i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.446−1.34i)T |
| 23 | 1+(−1.53−4.54i)T |
good | 3 | 1+(1.95−0.891i)T+(1.96−2.26i)T2 |
| 5 | 1+(1.03−0.895i)T+(0.711−4.94i)T2 |
| 7 | 1+(2.14+1.38i)T+(2.90+6.36i)T2 |
| 11 | 1+(−0.745−5.18i)T+(−10.5+3.09i)T2 |
| 13 | 1+(3.68−2.37i)T+(5.40−11.8i)T2 |
| 17 | 1+(0.725+2.46i)T+(−14.3+9.19i)T2 |
| 19 | 1+(−2.83−0.832i)T+(15.9+10.2i)T2 |
| 29 | 1+(−4.83+1.42i)T+(24.3−15.6i)T2 |
| 31 | 1+(5.16+2.35i)T+(20.3+23.4i)T2 |
| 37 | 1+(0.714+0.618i)T+(5.26+36.6i)T2 |
| 41 | 1+(−3.41−3.94i)T+(−5.83+40.5i)T2 |
| 43 | 1+(2.17+4.75i)T+(−28.1+32.4i)T2 |
| 47 | 1+6.04iT−47T2 |
| 53 | 1+(6.78−10.5i)T+(−22.0−48.2i)T2 |
| 59 | 1+(−2.90−4.51i)T+(−24.5+53.6i)T2 |
| 61 | 1+(1.40+0.643i)T+(39.9+46.1i)T2 |
| 67 | 1+(2.03−14.1i)T+(−64.2−18.8i)T2 |
| 71 | 1+(−6.01−0.864i)T+(68.1+20.0i)T2 |
| 73 | 1+(−13.9−4.10i)T+(61.4+39.4i)T2 |
| 79 | 1+(1.15−0.739i)T+(32.8−71.8i)T2 |
| 83 | 1+(6.21−7.17i)T+(−11.8−82.1i)T2 |
| 89 | 1+(6.34−2.89i)T+(58.2−67.2i)T2 |
| 97 | 1+(−3.24+2.81i)T+(13.8−96.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.00382297637725352668586775813, −13.82219633166900034155047133663, −12.43205007526003862208412533872, −11.32643548498073658527904758147, −10.00025427845120007345210191382, −9.530710209496395301889516810847, −7.38154138160215805815809586679, −6.85603782178984402766561245009, −5.32372606440200284184067988817, −4.23001873226722984842228268678,
0.46773010779926880147682104483, 3.16481878844097437489565146392, 5.09372875039499603534421125842, 6.39297946906820040788191254069, 8.084712540872461776231450141165, 9.188462661357770457656466855396, 10.57700772153545217232424840275, 11.45878841424288552045064960830, 12.43796440477046271988823503998, 12.76944856435903707617310525259